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Out-of-time-order correlation functions provide a proxy for diagnosing chaos in quantum systems.
We propose and analyze an interferometric scheme for their measurement, using only local quantum
control and no reverse time evolution. Our approach utilizes a combination of Ramsey interferometry
and the recently demonstrated ability to directly measure Renyi entropies. To implement our
scheme, we present a pair of cold-atom-based experimental blueprints; moreover, we demonstrate
that within these systems, one can naturally realize the transverse-field Sherrington-Kirkpatrick
(TFSK) model, which exhibits certain similarities with fast scrambling black holes. We perform
a detailed numerical study of scrambling in the TFSK model, observing an interesting interplay
between the fast scrambling bound and the onset of spin-glass order.
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Much of statistical mechanics rests on the assumption
that generic systems will, after sufficient time, arrive at
a state close to thermal equilibrium. In isolated quan-
tum systems, the approach to equilibrium is character-
ized by the spreading of entanglement and quantum in-
formation. That there might exist fundamental limits
on the rate of thermalization has a long history [1–6]. At
one extreme are strongly disordered systems, where ther-
malization is absent and quantum information spreads
slowly [7–14]. At the other extreme, certain gauge theo-
ries appear to spread quantum information very rapidly
[15–17]. However, these gauge theories are special—their
thermal states are “holographically dual” to black holes
in Einstein gravity [18]. They are also highly symmetri-
cal, display scale invariant physics, and do not order at
low temperatures despite strong interactions.

Thus, a key question is: Where do typical interacting
systems fall between these two extremes? The lack of
general theoretical tools in this context suggests that ex-
periments will be essential to explore the nature of infor-
mation spreading or “scrambling” in many-body systems
[15]. More precisely, scrambling describes the delocaliza-
tion of quantum information over all of a system’s de-
grees of freedom. The analog of scrambling in a classical
system is chaos and is diagnosed by the butterfly effect,
which describes the exponential sensitivity of a particle’s
motion to small changes in its initial conditions. As an
example, the Poisson bracket of position and momen-
tum, {x(t), p} = ∂x(t)/∂x(0), can be used to quantify
the butterfly effect [1]. The strength of quantum scram-
bling can similarly be diagnosed using the commutator,
C(t) = 〈[W (t), V (0)]†[W (t), V (0)]〉, where V and W are
unitary operators [15, 16, 19–21].

The functional onset of scrambling is particularly in-
triguing, with certain systems exhibiting a parametric
period of exponential growth, C(t) ∼ eλLt [21–24]. In
semi-classical systems, λL can be interpreted as a Lya-
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FIG. 1. (a) Schematic of our interferometric protocol. An
ancilla qubit is coupled to two copies of a quantum system
(prepared at inverse temperature β/2) at different locations
i, j and i′, j′. By performing ancilla-state dependent interac-
tions both before and after time evolution, one can measure
out-of-time-order correlation functions. (b) Circuit diagram
illustrating the interferometric protocol. After preparing the
ancilla in 1/

√
2(|↑〉+ |↓〉), controlled unitaries are performed,

first conditioned on |↑〉 (V ) and then conditioned on |↓〉 (W ).
Simultaneous measurement of σx on the ancilla and SWAP
on the systems results in the correlator F (t).

punov exponent characterizing the strength of chaos. For
gauge theories dual to black holes, there exists a param-
eter N , such that the large-N limit is semi-classical and
λL = 2πkBT/~, saturating a recently proposed upper
bound on the rate of scrambling [17].

While intriguing, the scrambling behavior of systems
dual to black holes is only one extreme of a largely un-
explored landscape. For example, although temperature
provides the only natural energy scale for a black hole,
generic quantum many-body systems can exhibit a multi-
tude of additional energy scales governed, e.g. by micro-
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scopic couplings and/or low temperature order. Whether
the presence of these additional scales precludes fast
scrambling, at or near the conjectured bound, remains
an open question. Experimental exploration is thus cru-
cial to search for new “universality classes” of scrambling
behavior and to develop a comprehensive picture of in-
formation scrambling in systems realized in nature.

To directly measure the commutator C(t) amounts
to a measurement of an out-of-time-order correlation
function, F (t) = 〈W †(t)V †(0)W (t)V (0)〉 where C =
2 − 2 Re[F ]. Experimentally, the measurement of F (t)
is extremely challenging because it effectively involves
reversing the flow of time at various points in the mea-
surement, or equivalently, time-evolving with both the
Hamiltonian, H, and its negative counterpart, −H. A
protocol using both forward and backward time evolu-
tion has been developed to measure F [25]; while the
necessary ingredients can be engineered in a variety of
quantum optical systems, a complementary approach not
involving backwards time evolution would be advanta-
geous.

In this Letter, we introduce an interferometric ap-
proach to measure out-of-time-order correlation func-
tions which requires only local quantum control and no
reverse time evolution (Fig. 1a). Our method utilizes a
combination of Ramsey interferometry and the recently
demonstrated experimental capability to measure Renyi
entropies [26–28]. Besides not requiring reverse time
evolution, the scheme also enables the measurement of
so-called thermally regulated out-of-time-order correla-
tions, e.g. Tr[

√
ρW †(t)V †(0)

√
ρW (t)V (0)] with ρ the

thermal state. This regulated correlator is believed to
exhibit identical early time scrambling signatures and
helps to enable analytical calculations in certain limits
[17, 21, 23, 24]. Because our scheme requires the mea-
surement of a many-body overlap, it is naturally suited
to study systems with relatively low entropy.

To this end, we perform a numerical study of
scrambling dynamics in the transverse-field Sherrington-
Kirkpatrick (TFSK) model with N ∼ 20 spins [29–32],

HTFSK = −1

2

∑

i 6=j
Jijσ

z
i σ

z
j − Γ

∑

j

σxj (1)

where ~σ are Pauli operators. The model consists of N
spins in a transverse field Γ, with random all-to-all Ising
interactions, Jij , drawn from a normal distribution of

zero mean and variance σ =
√
J2/N [32]. The all-to-

all couplings mimic a similar aspect of black hole mod-
els and open the possibility of observing fast scrambling
[15, 21–24]. The numerics depict a rich variety of scram-
bling behaviors even for relatively small system sizes that
should be readily accessible with our protocol. Intrigu-
ingly, we also find a suggestive interplay between the
bound on scrambling and the onset of spin-glass order.
Finally, we provide a pair of cold-atom-based experimen-

tal blueprints for implementing the TFSK model and
measuring the scrambling correlation function.
General Strategy—Let us begin by considering

a many-body quantum system with Hamiltonian
H. The correlator F (t) can be written as
Tr[ρβe

iHtW †(0)e−iHtV †(0)eiHtW (0)e−iHtV (0)], where
ρβ is the thermal density matrix of the system and
β = 1/kBT is the inverse temperature. Noting that√
ρ ∼ ρβ/2, our strategy will be to measure

F2(t) = Tr[e−iHtV †ρβ/2e
iHtW †e−iHtV ρβ/2e

iHtW ], (2)

which is directly proportional to the thermally regulated
correlator [33]. Two remarks are in order. First, one
expects that the magnitude of the experimental signal
associated with F2(t) will decrease with system size as
it corresponds to a many-body overlap. Second, F2(t)
factorizes as β → ∞, implying that it will serve as an
accurate proxy for F (t) only at finite energy densities
[17]. As will be shown in the numerics, for mesoscopic
spin ensembles, neither of the above becomes a limiting
concern for intermediate temperatures of interest.

Crucially, the functional form of F2(t) is suggestive of
a 2nd Renyi entropy measurement [34]. Such a measure-
ment can be realized by preparing two identical copies of
a quantum system and performing a subsequent sequence
of individual SWAP operations, S, between the copies
[26]; indeed, recent experimental progress has harnessed
this approach to explore entanglement-based signatures
of thermalization [28].

With this technique in mind, we devise an interfero-
metric approach (Fig. 1b) to measuring out-of-time-order
correlation functions by utilizing only a single ancilla
qubit (with states {|↓〉 , |↑〉}) and Hamiltonian evolution.
Let us begin with both copies of the system and the an-
cilla qubit prepared in the product state, ρ(t = 0) =
(ρβ/2)⊗2⊗|+〉〈+|, where (ρβ/2)⊗2 = ρβ/2⊗ρβ/2. Assum-
ing that the ancilla is capable of exerting a local state-
dependent interaction on the system, time evolution then
yields,

ρ(t) =
1

2
[|↑〉 〈↑|⊗(U†↑ρβ/2U↑)

⊗2+|↓〉 〈↓|⊗(U†↓ρβ/2U↓)
⊗2

+ |↑〉 〈↓| ⊗ (U†↑ρβ/2U↓)
⊗2 + |↓〉 〈↑| ⊗ (U†↓ρβ/2U↑)

⊗2] (3)

where U†↑ = W †e−iHt, U†↓ = e−iHtV and V , W are spa-

tially separated at locations i and j. Here, U†↑(↓) are uni-

tary operators that describe the combination of Hamilto-
nian time evolution and the ancilla-state-dependent in-
teraction (Fig. 1b).

Assuming that V and W are both Hermitian and
unitary, the resulting density matrix contains terms
of the form (U†↓ρβ/2U↑)

⊗2 = e−iHtV ρβ/2eiHtW ⊗
e−iHtV ρβ/2eiHtW , precisely matching the desired form
of F2(t) [36]. This suggests that one may be able to ex-
tract coherences of the time-evolved density matrix and
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FIG. 2. Numerics on the the Sherrington-Kirkpatrick model in a transverse field. For system sizes N = 10, 12, we perform 103

disorder averages, for N = 14, we perform 102 disorder averages and for N = 16, we perform 29 disorder averages. Throughout
the simulations, J = 1 and Γ = 1.35. (a) Depicts decay of the autocorrelation function R(t) = 〈σzi (t)σzi (0)〉β and growth of
the scrambling correlator C(t) = −〈[σzi (t), σzj (0)]2〉β at various inverse temperatures β = 1.1, 2, 4. The approximate time scale
for dissipation is indicated as td. (b) Numeric fitting to the phenomenological function Cf (t) where Nc and ∆ are fixed for
all curves to extract the Lyapunov exponent, λ, as a function of temperature. (c) Depicts λ as a function of temperature. At
intermediate temperatures, the growth of C(t) seems to be approximately linear. The temperature of the spin glass transition
as determined from Monte Carlo is indicated as the blue dashed line [35]. The red dashed line depicts the scrambling bound;
since the exponent controlling the early time growth of Cf (t) is 2∆λ (see footnote), we plot 2πT/2∆ to compare directly with
the extracted λ. The inset shows the differences in C(t) at low and high temperatures. At low temperatures C(t) does not
reach its maximally scrambled value even at late times ∼ 102/J . (d) Comparison between C(t) and C2(t) for β = 4. The inset
depicts the ratio of λ as extracted from C(t) and C2(t) as a function of system size (black points) and λβ=4 as a function of
system size (blue points).

naturally leads us to consider an interferometric approach
based upon Ramsey spectroscopy.

In particular, by independently measuring σx ⊗ S and
σy ⊗ S (where σx,y act on the ancilla qubit and SWAP
S acts on the two copies of the system), one is able to
measure the real and imaginary portions of F2(t). To see
this, let us project ρ(t) onto the eigenstates of σx. Noting
that Tr[ρAρB ] = Tr[SρA ⊗ ρB ], we obtain

Tr [ρ(t)σx ⊗ S] = Tr
[
(e−iHtV ρβ/2e

iHtW )2
]

+ c.c.

= Re[F2(t)]. (4)

and Tr [ρ(t)σy ⊗ S] = Im[F2(t)]. Having demonstrated
the ability to directly measure thermally regulated out-
of-time-order correlators, we now turn to a numerical
study of scrambling dynamics in the TFSK model.

TFSK Numerics—We perform exact diagonalization
and numerical integration of Hamiltonian [Eqn. (1)] evo-
lution for systems of up to N = 16 spins. As previ-

ously discussed, while the model features certain simi-
larities with fast scrambling gauge theories [15, 21, 22],
it remains an open question whether its dynamics (e.g.
growth of C(t)) are controlled by the thermal scale or
by microscopics; this owes in part to the existence of a
low-temperature spin-glass phase for Γ . 1.5 [35, 37–41].

To begin probing thermalization dynamics in HTFSK,
we determine the dissipation time, td, which character-
izes the decay of local two-point correlation functions.
In particular, as shown in Fig. 2a (black lines), we
compute the disorder averaged autocorrelation function
R(t) = 〈σzi (t)σzi (0)〉β ; td is identified as the time at which
correlations have dropped to less than 0.05 and is approx-
imately independent of temperature for 1 < β < 4.

At the same temperatures, one finds that C(t) =
−〈[σzi (t), σzj (0)]2〉 begins to exhibit a sharp rise for t > td,
indicative of the onset of scrambling (Fig. 2a). Intuition
from the black hole problem suggests that the time to
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reach a maximally scrambled state is of order ∼ lnNc,
where Nc is proportional to the entropy. This suggests
fitting C(t) with a function of the combined variable
eλt/Nc; indeed, we observe that the early to interme-
diate time data can approximately be captured using a
phenomenological function

Cf (t) = 2

(
1
Nc
eλt

1 + 1
Nc
eλt

)2∆

, (5)

where ∆ is an operator-dependent fitting parameter (in
the context of black holes, ∆ is the scaling dimension of
the operator), and λ characterizes the Lyapunov expo-
nent. To quantitatively analyze the data, we perform a
nonlinear regression, keeping Nc and ∆ fixed across all
temperatures and extract λ as a function of β as shown in
Fig. 2b,c (note that the dotted lines in Fig. 2b correspond
to Cf (t) with extracted parameters).

A few remarks are in order. First, at the system sizes
studied, it is hard to distinguish between dissipation and
the onset of scrambling, although the data are consistent
with a small separation in time-scales. Second, Fig. 2c
provides evidence that for T . J , the temperature depen-
dence of λ [42] becomes approximately linear, although
the slope is more than an order of magnitude smaller
than the conjectured upper bound [17]. At these tem-
peratures, λ exhibits a weak decrease as a function of
system size (Fig. 2d, inset); intriguingly, this trend is
consistent with a recent holographic calculation of 1/N
corrections to λL [43].

At even lower temperature, near or below the spin glass
transition, C(t) does not reach its maximally scrambled
value of 2 at late times (Fig. 2c, inset). Moreover, for
these finite size systems, there is a near collision be-
tween the onset of spin-glass order and the temperature
at which the value of λ seems to violate the scrambling
bound (Fig. 2c, red dashed line). That the value of λ
below the transition seems to be well above the bound is
somewhat surprising as one might have expected scram-
bling to slow once the spins freeze.

For high temperatures, T & J , the data show ev-
idence of saturation consistent with scrambling being
governed by the microscopic scale. Finally, Fig 2d de-
picts a direct comparison between C(t) and C2(t) =
−Tr[ρβ/2[W (t), V ]ρβ/2[W (t), V ]]. While they agree at
short times, differences begin to accumulate at late times.
The ratio of the exponents, λβ and λβ/2, extracted from
C(t) and C2(t) respectively (Fig. 2b, Fig. 2d, inset), in-
creases weakly with system size, indicating subtleties in
scaling at larger systems. Crucially, extrapolating the
ratio of C(t) and C2(t) at finite O(1) times suggests that
the signal to noise observed in current generation exper-
iments should allow for exploration of system sizes up to
N ∼ 50 spins, well beyond the capability of numerics.

Experimental Implementation—We now propose two
experimental blueprints for realizing our interferometric
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FIG. 3. (a) Schematic of a one-dimensional lattice of ul-
tracold atoms interacting with two impurities. There exists a
strong interspecies Feshbach resonance between impurity and
atom only when the impurity resides in state |f〉 . By driving
the left impurity to state |f〉 before time evolution and the
right impurity to |f〉 after time evolution (τ is the time needed
to accumulate the Feshbach interaction), one can implement
controlled unitaries V and W at asymmetric positions in time
and space. (b) Schematic of a 1D lattice of Rydberg atoms
interacting with the ancilla via a long-range blockade-based
gate. Each atom consists of two ground state hyperfine lev-
els |↑〉, |↓〉 coupled to a Rydberg state |r〉 via an off-resonant
laser field.

protocol, where the underlying system is composed of
an array of ultracold atoms trapped in a 1D optical ar-
ray (Fig. 3). First, we will describe an approach based
upon Feshbach interactions and second, we will consider
a method that utilizes a Rydberg-blockade gate [44–46].
Focusing on the latter, we will further demonstrate that
this system naturally simulates the TFSK model.

Feshbach Interactions—Here, we envision our 1D
atomic gas to be interacting with a pair of ancilla qubits
(e.g. impurity atoms) at positions i and j (Fig. 3a).
Each ancilla consists of three states {|g〉, |e〉, |f〉}, with
only state |f〉 exhibiting a strong inter-species Feshbach
interaction with the atoms in the 1D chain. The only
resource required to implement our proposed interfero-
metric protocol is that the two ancillae are initialized in
an entangled state, |gigj + eiej〉. In order to implement
U†e = V e−iHt and U†g = e−iHtW , the Feshbach interac-
tion must be applied at different times at the two posi-
tions. This can be accomplished via a coherent π-pulse
on the ancilla at site i at time t = 0 (before Hamiltonian
evolution) and on the ancilla at site j at time t (after
time evolution), as shown in Fig. 3a.

Rydberg Blockade—In the case where each atom within
the system is weakly dressed via a Rydberg state, |r〉,
a particularly elegant approach emerges. A combina-



5

tion of the Rydberg-blockade [47] and local addressabil-
ity [48–50] will then enable the application of ancilla-
spin-dependent Hermitian operators (e.g. V = σzi and
W = σzj ) at two spatially separated locations i and j.
Leveraging the long-range nature of the Rydberg interac-
tion allows for the use of only a single ancilla atom shared
between the two systems. We note that this general ap-
proach can also be implemented in a photonic system,
where long optical delay lines play the role of asymmet-
ric timing and strong optical nonlinearities play the role
of interactions.

After preparing the systems in a thermal state ρβ/2
and the ancilla in (|↑〉+ |↓〉)/

√
2, we apply a π-pulse be-

tween the |↑〉c and |r〉c states of the ancilla. Next, a
2π-pulse is applied between the |↑〉i and |r〉i states of
atoms i and i′ (Fig. 1 and Fig. 3b). Owing to the block-
ade, the |↑〉i |r〉c component of the wavefunction picks
up a π phase shift while the phases of all other com-
ponents remain unchanged [44–46]. This corresponds to
the application of a Hermitian operator −2Szi (Szc + 1/2)
that implements a controlled-V gate (Fig. 1b). A second
π pulse between |↑〉c and |r〉c restores the state of the
ancilla. The analogous procedure can be repeated after
time-evolution to apply W controlled on the ancilla qubit
being in state |↓〉c, after which the resulting state ρ(t) is
precisely given by Eqn. (3).

In addition to enabling our interferometric protocol, a
1D lattice of Rydberg atoms also provides a natural re-
alization of the transverse-field Sherrington-Kirkpatrick
model [Eqn. (1)]. Experimentally, the spin degrees
of freedom can be formed from two hyperfine states
within each atom, wherein the transverse field Γ = Ωmw

(Fig. 3b) simply corresponds to applying resonant mi-
crowave radiation between these states. The Rydberg
blockade can again be used to implement all-to-all Ising
interactions within each copy of the system. [51]. In
particular, as shown in Fig. 3b, an off-resonant laser field
with Rabi frequency Ω and detuning ∆i couples each spin
|↑〉-state with a highly excited Rydberg state |r〉. This
induces an ac Stark shift of |↑〉 that depends on the spin
states of surrounding atoms (e.g. due to van der Waals
interactions between atoms virtually excited to |r〉) and
leads to a long-range interacting Hamiltonian of the form:∑
i,j Jijσ

z
i σ

z
j , where Jij = C̃6

(ri−rj)6+ã6B
[52].

The coupling strengths Jij are determined by C̃6 =
C6Ω4/(∆i + ∆j)

4, where C6 is the coefficient of the
van der Waals interaction between Rydberg states |r〉i
and |r〉j . In the regime where the blockade radius

ãB = (C6/|∆i + ∆j |)1/6 is larger than the system size
one obtains all-to-all interaction between spins. To avoid
stray long-range interactions between the two copies dur-
ing evolution, we assume that they are initially spatially
separated, while the ancilla qubit is localized between
them to allow for simultaneous coupling with each sys-
tem. Randomized Ising couplings Jij can be achieved by

introducing a 1D speckle potential [53, 54], which leads
to random detunings ∆j ; if the transverse correlation
length of the speckle is sufficiently large, the two copies
of the system will be subject to identical randomized in-
teractions. By introducing a second dressing laser to an
attractive Rydberg state |r′〉, one can even obtain a dis-
tribution of Jij with zero mean [51].

To summarize, we have shown that concepts originat-
ing in the physics of black holes have a rich connection to
quantum optical systems. We do so through two results.
First, we introduce a general interferometric approach to
measuring out-of-time-order correlation functions, which
requires only local quantum control and no reverse time
evolution. Second, we show that the quantum-optics
toolbox can be used to realize the TFSK model and mea-
sure C(t); moreover, we demonstrate numerically that
this model exhibits “pretty fast” scrambling. In partic-
ular, a phenomenological fit of C(t) is consistent with a
time to reach maximal scrambling proportional to lnN .
Because our protocol involves observables that scale with
system size like Tr(ρ2) = e−S2 , the approach is most
promising when the entropy is relatively small. Examples
include mesoscopic many-body systems at low tempera-
ture, systems with an unbounded Hilbert space dimen-
sion but finite entropy, and single particle-like models
that exhibit quantum chaos.

Looking forward, measurements of C(t) can provide
quantitative access to important questions related to
thermalization and ergodicity in interacting many-body
systems. For example, scrambling dynamics may give in-
sight into the non-local dressing of Heisenberg operators
under time evolution. Along these lines, it may be par-
ticularly fruitful to study integrable models, which either
do not scramble or scramble only very weakly. In par-
ticular, by perturbing such models, one can probe how
chaos develops and whether out-of-time-order correlation
functions might exhibit evidence for a quantum analog of
the celebrated Kolmogorov-Arnold-Moser theorem [55].
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