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We propose and analyze a method to engineer effective interactions in an ensemble of d-level systems
(qudits) driven by global control fields. In particular, we present (i) a necessary and sufficient condition
under which a given interaction can be decoupled, (ii) the existence of a universal sequence that decouples
any (cancelable) interaction, and (iii) an efficient algorithm to engineer a target Hamiltonian from an initial
Hamiltonian (if possible). We illustrate the potential of this method with two examples. Specifically, we
present a 6-pulse sequence that decouples effective spin-1 dipolar interactions and demonstrate that a spin-1
Ising chain can be engineered to study transitions among three distinct symmetry protected topological
phases. Our work enables new approaches for the realization of both many-body quantum memories and
programmable analog quantum simulators using existing experimental platforms.
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The controlled manipulation of quantum systems with
pulsed coherent fields is important in nearly all branches of
quantum science. The techniques associated with dynamical
coherent control have a long and storied history, originating
in nuclear magnetic resonance (NMR), where periodic
sequences of control pulses enable the isolation of nuclear
spins from unwanted external noise sources [1]. Over the
past few decades, advanced techniques have been developed
with goals ranging from frequency-selective decoupling to
higher-order error suppression, and applications ranging
from metrology to information processing [2–14].
Periodic control pulses can also be used to engineer many-

body interactions. In particular, they can enable the realiza-
tion of driven (Floquet) systems that exhibit phenomena
richer than the original system without dynamical control
[15–21]. This approach falls under the moniker of average
Hamiltonian theory [22], a term prevalent in the context of
solid-state NMR, where sequences of spin rotations are used
to modify the intrinsic interactions between magnetic dipoles
[22,23]. A particularly powerful example is the celebrated
WAHUHA pulse sequence [23] which cancels the dipole-
dipole interaction between spin-1=2 particles and has been
extensively utilized in systems ranging from solid-state spin
defects to ultracold polar molecules [7,24]. More generally,
pulsed periodic driving has enabled the experimental explo-
ration of a variety of exotic many-body quantum phenomena
including dynamical phase transitions, quantum chaos,
glassy dynamics in disordered systems, and discrete time-
crystalline order [25–29]. While the majority of existing
pulse sequences are designed to engineer Hamiltonians
constructed from spin-1=2 or qubitlike systems [30–33],
recent experimental progress has opened the door to the
manipulation of many-body qudit systems, whose basic
degrees of freedom possess d internal states. Indeed, in
platforms ranging from trapped ions and Rydberg atoms to

superconducting qubits and solid-state spin defects, coherent
interactions among multiple qudits have already been
observed [24,29,34]. This enables the study of quantum
many-body qudit systems that can exhibit phenomena
qualitatively distinct from their spin-1=2 counterparts, such
as generalized Potts model and parafermionic topological
phases [35–38]. Generalizing Hamiltonian engineering
methods to qudit systems may enable exploration of such
unique phenomena with important potential applications in
areas such as quantum simulations.
In this Letter, we report two advances toward this goal.

First, we present a complete generalization of theWAHUHA
pulse sequence for an arbitrary qudit system. We derive a
necessary and sufficient condition that diagnoses when
generic interactions can be canceled. Moreover, we prove
the existence of a universal pulse sequence that decouples
any cancelable interaction. This result implies that locally
encoded quantum information can be protected even in a
strongly interacting qudit ensemble. As an example, we
present a novel pulse sequence that decouples spin-1 dipolar
interactions. Second, we present an algorithm that deter-
mines when a given initial HamiltonianH0 can be mapped to
a desired final HamiltonianHf, using a predetermined set of
global pulses. Such a technique provides a recipe to trans-
form an interacting many-body system into a programmable
analog quantum simulator [33]. In this context, we demon-
strate that a spin-1 classical Ising chain can be directly
mapped to a family of Hamiltonians whose ground states
include a variety of symmetry protected topological (SPT)
phases. In both cases, we consider an ensemble of d-level
systems with generic pairwise interactions and assume that
only global SUðdÞ manipulations are available. This setting
is ubiquitous and particularly relevant to recent experimental
developments in a variety of platforms [24–29,39–42]. We
note that in the case where qudits can be independently
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addressed and controlled, arbitrary modifications of the
underlying interactions are possible [32,33,43–45]; however,
such precise individual controls are typically challenging to
implement in strongly interacting many-body systems.
We consider an N qudit system with Hamiltonian,

H ¼
X

ij

Jijhij; ð1Þ

where hij represents a homogeneous two-qudit interaction
between i and j, and the scalars Jij fully characterize the
geometry, range and strength of the interactions. Hami-
ltonian evolution is interspersed with a rapid and repeated
sequence of k pulses, denoted Pi. More specifically, each
pulse is followed by free evolution under H for a duration
τi. Assuming that the manipulations are sufficiently fast,
one can rewrite the (Floquet) unitary evolution over one
such k cycle as

UðTÞ ¼ e−iHτkPk…e−iHτ2P2e−iHτ1P1; ð2Þ
where T ¼ P

k
i¼1 τi is the total time duration of the cycle.

At integer multiples of the driving period T, the time
evolution is captured by an effective Hamiltonian Heff ,
defined by UðTÞ ¼ exp ð−iHeffTÞ.
In the case of both dynamical decoupling and

Hamiltonian engineering, the key idea is to design a finite
pulse sequence such thatHeff approximates a desired target
Hamiltonian. Defining Ui ≡ PiPi−1…P2P1 and U0 ≡ I,
one can rewrite Eq. (2) as

UðTÞ ¼ e−iH̄kτk…e−iH̄2τ2e−iH̄1τ1 ; ð3Þ
where H̄i ¼ U†

i HUi [46]. By moving into this so-called
toggling frame [22], the pulsed unitary dynamics [Eq. (2)]
can be described by continuous evolution under a time-
dependent Hamiltonian. Recently, it has been shown that
Heff can be approximated by a controlled Magnus expan-
sion in the high frequency limit, leading to an effective
Hamiltonian description valid up to exponentially long
times [47–50]. In particular, for a driving frequency,
ω ¼ 2π=T, that is large compared to local energy scales

∼J, Heff ≃Pq�
q¼0ðJ=ωÞqHðqÞ

eff , where HðqÞ
eff denotes the qth

order term while q� is the maximum order beyond which
heating effects become non-negligible. Here, we assume a
rapid pulse sequence satisfying ω ≫ J and focus on the
leading order effective Hamiltonian,

Heff ≈Hð0Þ
eff ¼

X

i

τi
T
H̄i: ð4Þ

Once a desired pulse sequence is found, one can always

symmetrize it such that the next order correction Hð1Þ
eff also

vanishes, leaving only a strongly suppressed second order
(q ≥ 2) contribution [51]. From the linearity of Eq. (4), we
only need to consider a single term hij and hence omit the
qudit indices below.

Consistent with the control available in many-body
qudit systems, we focus on the case where one can only
apply global single-qudit rotations, i.e., Pi ¼ p⊗N

i for some
pi ∈ SUðdÞ. To represent the interactions, we use a trace
orthonormal operator basis fλμg with tr½λμλν� ¼ 2δμν. In this
basis, themost general two-qudit interaction can bewritten as

h ¼
X

μν

Cμνλμ ⊗ λν: ð5Þ

Hermiticity and the exchange symmetry imply that C is
a real symmetric m ×m matrix with m ¼ d2 − 1. For a
given h, the matrix C can be explicitly obtained using
Cμν ¼ tr½hλμ ⊗ λν�=4.
Interaction decoupling.—We now derive a necessary and

sufficient condition for the full decoupling of an interacting
qudit Hamiltonian.
Theorem 1.—For a given two-qudit interaction h, there

exists a finite sequence fpig ⊂ SUðdÞ, or, equivalently,
fuig ⊂ SUðdÞ, and fτig ⊂ Rþ, such that heff ¼

P
iðτi=TÞ

ðu†i ⊗ u†i Þhðui ⊗ uiÞ ¼ 0 if and only if the Cmatrix of h is
traceless, i.e., tr½C� ¼ P

μtr½hλμ ⊗ λμ�=4 ¼ 0.
Proof.—For convenience we work with interactions

represented as C matrices, whose transformation under a
unitary rotation ui ⊗ ui is given by

X

μν

Cμνλμ ⊗ λν ↦
X

μν

Cμνðu†i λμuiÞ ⊗ ðu†i λνuiÞ ð6Þ

≡X

μν

CðiÞ
μνλμ ⊗ λν; ð7Þ

where the coefficients CðiÞ
μν are defined by the equality

above. More specifically, two matrices CðiÞ and C are
related by the transformation CðiÞ ¼ ðOiÞTCOi, where
Oi

ν0ν ≡ 1
2
tr½λνu†i λν0ui�. Taking into account the full sequence

of unitary pulses yields the C matrix for the effective
Hamiltonian as

Ceff ¼
X

i

αiðOiÞTCOi: ð8Þ

where αi ¼ τi=T characterizes the relative time scale of the
various intermediary free evolutions. Intuitively, Eq. (8)
demonstrates that the effective interaction is simply given
by a weighted average of “rotated” versions of the original
interaction. Indeed, it can be easily shown that Oi is a real
orthogonal matrix.
First, one immediately sees that the trace ofC is preserved.

Thus, it is necessary for the originalCmatrix to be traceless in
order for the effective Hamiltonian to be fully decoupled.
Second, this also naturally suggests a decomposition of a
general interaction into two components: an isotropic part
with nonzero trace and a traceless anisotropic part. Since C
is a real-symmetric matrix, there exists only one linearly
independent isotropic component, which is proportional to
the identity matrix. The corresponding two-qudit interaction
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is hiso ∝
P

μλμ ⊗ λμ. Equation (8) shows that any isotropic
interaction cannot be modified by global pulses as it is
invariant under SUðdÞ rotations.
To prove sufficiency, we construct a pulse sequence that

explicitly cancels any interaction (Ceff ¼ 0) given that the
interaction is purely anisotropic. The design principle of this
“universal decoupling” sequence is simple: find a finite set
of fuig, where the corresponding fOig are distributed
among all possible rotations such that their weighted average
vanishes; this strategy is reminiscent of unitary 2-designs,
but here, we have one additional control knob, correspond-
ing to the choices of αi. Interestingly, a very related problem
has been already studied in quantum information science. In
Ref. [57], Dür et al. introduce a depolarization superoperator
D that acts on a density matrix ρ of a two-qudit system

DðρÞ ¼ Ad
tr½Adρ�
tr½Ad�

þ Sd
tr½Sdρ�
tr½Sd�

; ð9Þ

where SdðAdÞ is the projector onto even(odd) eigenspace
of the exchange operator Πd ¼

P
d
i;j¼1 jijihjij, i.e., Ad ¼

ðI − ΠdÞ=2 and Sd ¼ 1 − Ad ¼ ðIþ ΠdÞ=2. It is shown,
by explicit construction, that Dð·Þ can be implemented
by a finite sequence of probabilistic bilocal operations,P

k
i¼1 piðv†i ⊗ v†i Þρðvi ⊗ viÞ ¼ DðρÞ, where fpig is a

probability distribution and fvig ⊂ SUðdÞ. Here, we reinter-
pret the superoperator as a dynamical decoupling sequence
via the mapping: pi → αi and vi → ui. To show that this is a
universal decoupling sequence, we demonstrate that for an
arbitrary interaction h, tr½Sdh� ¼ −tr½Adh� ¼ tr½C�; thus,
tr½C� ¼ 0 implies DðhÞ ¼ 0. The proof is simple: for h
acting on qudits A and B,

tr½hΠd� ¼
X

μνij

Cμνtr½λAμ ⊗ λBν jijihjij� ð10Þ

¼
X

μνij

CμνhjAjλAμ jiAihiBjλBν jjBi ð11Þ

¼
X

μν

Cμνtr½λμλν� ¼ 2tr½C�; ð12Þ

where we have explicitly dropped the qudit indices and
the tensor product [Eq. (12)] to emphasize that λμðνÞ are
matrices. Finally, noting that tr½h� ¼ P

μνtr½λAμ ⊗ λBν � ¼ 0,
we obtain tr½Sdh� ¼ −tr½Adh� ¼ tr½hΠd�=2 ¼ tr½C�, which
completes the proof of Theorem 1.
Hamiltonian engineering.—The previous case of inter-

action decoupling can be viewed as a specific example
of a more general question: given an initial set of inter-
actions h0, a target Hamiltonian hf and a finite set of
available unitaries U, is there a pulse sequence such thatP

iðτi=TÞðu†i ⊗ u†i Þh0ðui ⊗ uiÞ ¼ βhf for a constant
β > 0? If so, is there an efficient algorithm to construct
the desired pulse sequence? In what follows we describe
such an algorithm.

Let us begin by rewriting h0 and hf in their correspond-
ing C matrices C0 and Cf. We denote the strengths of their
isotropic components as s0 ¼ tr½C0� and sf ¼ tr½Cf�. As
previously discussed, if only one of their C is traceless, h0
cannot be mapped to hf since the isotropic components
can never be decoupled by any pulse sequence. We will
now divide our analysis into two cases: (i) s0 ¼ sf ¼ 0 and
(ii) s0, sf ≠ 0 (Fig. 1).
Case (i) [Fig. 1(a)]: Our strategy is to cancel the portion

of the interaction that is orthogonal to Cf while maximiz-
ing the strength of the remaining piece. To illustrate this
idea more clearly, we introduce a vector representation of
interactions

ðw⃗Þa ≡ tr½Cηa�=2; ð13Þ

using a matrix basis fηag of dimension m ¼ d2 − 1. In
this representation, Eq. (8) becomes w⃗eff ¼

P
iαiM

iw⃗
with Mi

ab ≡ 1
2
tr½ηaðOiÞTηbOi�. Our objective is to maxi-

mize w⃗eff · w⃗f while satisfying w⃗eff · P⊥ ¼ 0, where w⃗q

(q ∈ f0; fg) is the vector representation ofCq and P⊥ is the
projector on to a space that is orthogonal to w⃗f, i.e.,
ðP⊥Þab ¼ δab − ðw⃗fÞaðw⃗fÞb=jw⃗fj2. Interestingly, this task
can naturally be cast into the canonical form of linear
programming, i.e., maximize

P
iαiw⃗f ·Miw⃗0 with respect

to fαig under constraints
P

αiP⊥Miw⃗0 ¼ 0,
P

αi ¼ 1,
and αi ≥ 0 [58].
Case (ii) [Fig. 1(b)]: In this case, the contributions from

the isotropic components cannot be ignored, and they fix
the rescaling parameter, β ¼ s0=sf. Thus, one has to not
only engineer the “shape” of the anisotropic interaction
but also adjust its strength to match with the fixed β. Now
our strategy is to decompose the given interaction into

(a) (b)Purely anisotropic

Target

Source 

Pulse
sequence

Isotropic + anisotropic

Pulse
sequence
(engineer)

Source 
Isotropic Anisotropic

Isotropic Anisotropic Target

Pulse
sequence
(decouple)

FIG. 1. Schematic diagram of interaction engineering. Black
solid, red dotted, and blue dashed lines indicate full interactions,
isotropic components, and anisotropic components, respectively.
Dotted arrows represent applications of the dynamical decoupling
sequence. (a) When both source and target interactions are purely
anisotropic (s0 ¼ sf ¼ 0), one directly maps interactions. (b) For
interactions with both isotropic and anisotropic components,
one engineers only the anisotropic component and matches the
relative strength by canceling some fraction.
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three pieces: an isotropic part, a fraction of the anisotropic
part to be modified, and the remaining portion to be
canceled. To this end, one is searching for two pulse
sequences, P1 ¼ ðfτ1i g; fu1i gÞ, which maps C̄0 ↦ β�C̄f

and P2 ¼ ðfτ2i g; fu2i gÞ, which cancels C̄0 ↦ 0. Here, C̄q

(q ∈ f0; fg) is the anisotropic component of Cq and β� is
the maximum possible strength. As before, one can use
linear programming to efficiently find these sequences. If
both maps are possible and the engineered interaction
strength is sufficiently strong β� ≥ β, one can concatenate
two sequences to form P3 ¼ ðfðβ=β�Þτ1i ; ð1 − β=β�Þτ2i g;
fu1i ; u2i gÞ, which maps C0 ↦ βCf.
Decoupling spin-1 dipolar interactions.—We now turn

to two examples. First, we present a 6-pulse sequence
that decouples effective dipole-dipole interactions Hd ¼P

Jijhdij in an ensemble of spin-1 particles (states
fj � 1i; j0ig) with anharmonic level spacings [39],

hd ¼
X2

a¼1

ðXa ⊗ Xa þ Ya ⊗ YaÞ

− ðZ1 þ Z2Þ ⊗ ðZ1 þ Z2Þ; ð14Þ

where Xa, Ya, and Za are Pauli matrices associated
with two different transitions, j0i ↔ j þ 1iða ¼ 1Þ and
j0i ↔ j − 1iða ¼ 2Þ, of a single spin-1 particle [see
Fig. 2(a)] [51]. Such a Hamiltonian is ubiquitous in
quantum optical systems and arises in the context of
ultracold polar molecules, NV centers, and quadrupolar
nuclear spins [11,24,29]. While the solution for the
analogous question in dipolar spin-1=2 systems has been
known for a half-century (e.g., WAHUHA), the spin-1
problem remains an open question.
Motivated by typical experimental constraints, we

assume that the available manipulations are limited to a
set of composite pulses constructed from up to four � π or
�ðπ=2Þ pulses between any of the three transitions with
two different phases [Fig. 2(a)]. Using a linear program-
ming algorithm, we find an explicit decoupling sequence
using only 6 pulses fP1;…P6g with equal time durations
τi ¼ T=6 as depicted in Fig. 2(b). Explicit expressions for
these pulses are provided in the Supplemental Material
[51]. In order to test our sequence, we simulate the
dynamics of N ¼ 6 spin-1 particles with random interac-
tion strengths Jij ∈ ½−J; J� between every pair. We com-
pute the Floquet unitary UT ≡ P6e−iHdT=6P5…P1e−iHdT=6

and generate stroboscopic time evolution via ðUTÞn with
n ∈ Z. We introduce the fidelity F ðnTÞ≡ jtr½ðUTÞn�=Dj2,
where D ¼ 3N is the dimension of the Hilbert space. Since
F ðtÞ ¼ 1 if and only if the evolution corresponds to the
identity, the decay of F serves as a conservative measure
for the performance of our decoupling sequence.
Figure 2(c) depicts F ðtÞ for various values of T,

demonstrating that the evolution remains trivial up to

∼10=J for JT < 1. Once a given decoupling sequence is
found, one can always symmetrize it to further suppress
the leading order correction in Magnus expansion [51]. In
our case, such a sequence involves 10 pulses within the
period 2T. As shown in Fig. 2(c), the symmetrized
sequence significantly suppresses the interaction for time
scales up to ∼100=J.
Engineering SPT Hamiltonians.—As a second example,

we show that a spin-1 chain with nearest neighbor Ising
interactions can be directly mapped to a family of SPT
Hamiltonians [51]. More specifically, given a basic Ising
interaction HI ¼

P
iS

z
i S

z
iþ1, one can engineer a two-

parameter family of Hamiltonians Hðp; qÞ ¼ H1 þ pH2 þ
qH3 with

H1 ¼
X

i

S⃗i · S⃗iþ1; H2 ¼
X

i

ðS⃗i · S⃗iþ1Þ2;

H3 ¼
X

i

X

ða;b;cÞ∈S3
ðSai Sbi Sciþ1 þ Sai S

b
iþ1S

c
iþ1Þ;

F
id

el
ity

(a)

,

,
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(d) (e)
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II III
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0.8

1.0

101 102 103

(c)

Time
Pulse phase

(b)

6-pulse cycle

FIG. 2. (a) Level diagram for an anharmonic three level system.
(b) Decoupling sequence for spin-1 dipolar interactions. Pulse
durations are indicated by rotation angles, and phase choices are
color coded. (c) Numerical simulations of decoupling dipolar
interactions among N ¼ 6 spin-1 particles. Black solid line
indicates F ðtÞ in the absence of the pulse sequence. Blue, red,
and yellow solid lines correspond to F ðtÞ under a decoupling
sequence with 1=JT ¼ 3; 5; 10, respectively. Dashed lines are for
symmetrized sequences. (d) Two generators fa; xg of the sym-
metry group A4. (e) Phase diagram. Three SPT phases (I, II, and
III) are distinguished by the transformation of ground state wave
functions under the action of a ∈ A4. The colored area indicates
the domain of ðp; qÞ that can be engineered from Ising inter-
actions. Blue dot indicates the AKLT point ðp; qÞ ¼ ð1=3; 0Þ.
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where p; q ∈ R, S⃗i ¼ ðSxi ; Syi ; Szi Þ is the spin-1 vector oper-
ator, and

P
ða;b;cÞ∈S3 indicates the summation over all

permutations of ðx; y; zÞ. The symmetries of the
Hamiltonian include lattice translation, the bond-centered
inversion, and a global internal symmetry A4, which is the
symmetry group of a tetrahedron [see Fig. 2(d)]. All possible
SPT phases protected by these symmetries are explicitly
enumerated in Ref. [59].
When p ¼ 1=3 and q ¼ 0, the Hamiltonian reduces to the

celebrated Affleck-Kennedy-Lieb-Tasaki (AKLT) model,
whose ground state is exactly solvable and exhibits nontrivial
topological edge degrees of freedom [60]. As ðp; qÞ deviates
from this solvable point, phase transitions arise among three
distinct regions, I, II, and III, as indicated in the numerically
obtained phase diagram in Fig. 2(e) [51]. The ground states in
the three phases respect all the symmetries while they are
distinguished by the complexUð1Þ phase that the state picks
upon a 120° rotation a ∈ A4 of underlying spins [51]. Using
our algorithm,we find thatHðp; qÞwith 2jqj ≤ p ≤ 2 − 2jqj
can be engineered from HI [Fig. 2(e)]. The strength of
Hðp; qÞ is set to 1=ð3þ pÞ by isotropic components, and the
range of ðp; qÞ is limited by the maximum possible strength
of the engineered anisotropic components [51].
Discussions.—We now consider the dominant opera-

tional imperfections which may arise during our protocol.
First, periodic driving pulses may cause heating in the
many-body system, eventually leading to a featureless
infinite temperature state [61–63]. As discussed earlier,
such energy absorption is irrelevant until exponentially
long times t� ∼ exp ½Oð1=J̄TÞ�, where J̄ ≡maxi;jJij∥hij∥.
A second natural concern is that our method is based upon

engineering the low order Magnus Hamiltonian Hð0Þ
eff ,

which provides only an approximate description of the
full many-body dynamics. However, for gapped
Hamiltonians, higher order terms are strongly suppressed
so long as J̄T ≪ 1, and the phase should remain stable.
Third, in the presence of weak coupling to a bath, our
protocol can enhance qudit sensitivity to external noise at
harmonics of 1=T [6,10,13]. However, this extra sensitivity
can be mitigated if the control pulses are significantly faster
than the bandwidth of noise spectrum. In a similar vein, the
limited strength of control pulses also imposes additional
practical constraints for any experimental implementation;
in certain cases, further numerical optimization may help to
solve these practical issues [2,8,12].
Interestingly, the decoupling of interactions may result in

dynamical quantum phase transitions for isolated, weakly
disordered systems [64]. In such cases, the interplay of
weak disorder, suppressed interactions, and an exponen-
tially slow heating rate can lead to many-body localization,
where initial state memories survive for extremely long
times. Harnessing these effects may enable the coherent
manipulation and storage of quantum information in an
interacting many-body system [65,66].
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