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Abstract.  We show that in certain one-dimensional spin chains with open 
boundary conditions, the edge spins retain memory of their initial state for 
very long times, even at infinite temperature. The long coherence times do not 
require disorder, only an ordered phase. In the integrable Ising and XYZ chains, 
the presence of a strong zero mode means the coherence time is infinite. When 
Ising is perturbed by interactions breaking the integrability, the coherence time 
remains exponentially long in the perturbing couplings. We show that this is a 
consequence of an edge ‘almost’ strong zero mode that almost commutes with 
the Hamiltonian. We compute this operator explicitly, allowing us to estimate 
accurately the plateau value of edge spin autocorrelator.
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1. Introduction

A fundamental desire in quantum engineering is for localized degrees of freedom to 
maintain coherence over long times. While of course many of the issues in achieving 
such are experimental, recent theoretical work has provided a variety of new avenues to 
explore. Such avenues include (1) finding systems exhibiting prethermalisation, where 
achieving thermal equilibrium takes unusually long, (2) exploiting topological invari-
ants, and (3) adding strong disorder so that the ensuing many-body localization guar-
antees the existence of many conservation laws.

In this paper we analyse a type of quantum coherence involving aspects of all three. 
We show that in ordered phases in certain quantum spin chains, an almost edge strong 
zero mode operator results in unusually long coherence times for the edge spins. This 
behaviour is very similar to what happens in prethermalisation [1, 2]. Such zero modes 
are familiar from the study of topologically ordered systems [3], and can guarantee 
degeneracies in the spectrum, even among highly excited states [4]. Unusual behav-
iour in highly excited states is a hallmark of many-body localization [5], and a related 
phenom enon is described in [6, 7, 8]. Similar behaviour also occurs in the integrable 
XXZ chain, at least in excited states with zero energy density [9, 10].

We show here that a long edge-spin coherence time requires neither disorder and nor 
integrability. In fact, we show that if integrable, an edge strong zero mode guarantees 
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that the edge-spin coherence time is infinite, up to finite-size eects. In the presence 
of integrability-breaking interactions, the oprerator becomes an ‘almost’ edge strong 
zero mode, whose presence makes this coherence time finite but very long. This opera-
tor is quite reminiscent of, and presumably related to, the slowly relaxing local opera-
tors found by a numerical search [11]. Here however we are able to construct the zero 
mode directly and so analyse how it changes as couplings are varied. With one type 
of perturbation, we show that the coherence time decreases with the strength of the 
integrability breaking, as one might expect. However, when a dierent ordering term 
is included in the Hamiltonian, the coherence time is not monotonic in its strength. 
Rather, it depends on some interesting physics also seen in the many-body-localized 
context, typically known as resonances [12]. One fascinating consequence is that the 
coherence time is independent of whether or not the perturbation favours a competing 
order; the physics here is governed mainly by excited-state properties oblivious to the 
precise form of order in the ground state.

The purpose of this paper is to explain the impact of strong zero modes on the 
dynamics of the system. We apply the iterative method used for the XYZ chain [4] to 
find almost strong zero modes in non-integrable systems. Other work on strong edge 
zero modes has focussed on parafermionic models [13, 14, 15], and in section 4 we 
explain the cause and eect of the resonances first encountered there in a more general 
context. This paper complements [16], which uses the ADHH theorem [2] to prove that 
the almost strong zero modes we construct and analyse here must exist up to at least 
some minimum order in perturbation theory.

In section 2, we explain how in the Ising and XYZ spin chains, a strong edge zero 
mode results in an infinitely long coherence time for the edge spin. Only finite-size 
eects, exponentially small, destroy the coherence. Section 3 is the core of the paper. 
Here we show how in a non-integrable model, the Ising chain with additional interac-
tions, the edge spin has a finite but very long coherence time. The reason is the pres-
ence of an ‘almost’ strong zero mode, which almost commutes with the Hamiltonian. 
We compute it explicitly, and use it to estimate the value of the edge spin autocorre-
lator before the decay. In section 4, we address one reason why the coherence time is 
finite, the presence of resonances in perturbation theory. These turn into poles in the 
expansion of the strong zero mode. Section 5 contains some conclusions.

2. Infinite coherence time from the strong edge zero mode

2.1. The basic idea

We study quantum spin chains with L sites and open boundary conditions. For sim-
plicity, we focus on systems with two states per site. A convenient basis for operators 
acting on the 2L-dimensional Hilbert space is given by products of σa

j , the Pauli matrix 
σa acting at site j and trivially on the others, i.e. σa

j = 1⊗ 1⊗ . . . 1⊗ σa ⊗ 1⊗ · · · ⊗ 1. 
We study models with a Z2 symmetry under flipping all spins, where the operator

F =
L∏

j=1

σx
j (1)
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commutes with the Hamiltonian. We focus on ordered phases where the spin-flip sym-
metry is spontaneously broken, i.e. in infinite volume the system has two distinct ground 
states |g+〉 and |g−〉 with F|g±〉 = ±|g±〉. An important example is the transverse-field 
Ising chain, with Hamiltonian

HIsing = −J
L−1∑
j=1

σz
jσ

z
j+1 − Γ

L∑
j=1

σx
j . (2)

The ordered phase occurs for |Γ| < |J |.
Although we choose couplings so that the ground state is ordered, our interest is 

in the behaviour of highly excited states. The basic physical quantity we study is the 
autocorrelator of the edge spin magnetization

As(t) ≡ 〈s|σz
1(t)σ

z
1(0)|s〉, (3)

where s is an eigenstate of the Hamiltonian. In an ordered phase, the boundary magne-
tization in the ground states 〈g±|σz

1|g∓〉 is non-vanishing for open boundary conditions. 
Thus not surprisingly, Ag±(t) is non-vanishing as t → ∞. Remarkably, we will show 
that in certain integrable systems such an infinite coherence time holds for all eigen-
states of H:

lim
t→∞

lim
L→∞

As(t) �= 0. (4)

Our central result is an even more profound statement: even when integrability is bro-
ken and s is a highly excited eigenstate (or some mixture of them), As(t) can decay very 
slowly with time. This slow decay is very reminiscent of ‘prethermalization’ in systems 
after a quantum quench [1, 2, 11].

To understand this slow decay, we first explain why the infinite edge-spin coherence 
time (4) occurs in certain integrable spin chains. It is because a strong zero mode results 
in a ‘pairing’ in the spectrum [4, 13, 14, 17, 18]. The connection between the pairing 
and the infinite coherence time becomes apparent by introducing a resolution of the 
identity into the autocorrelator:

As(t) =
∑
r

〈s|e−iHtσz
1e

iHt|r〉〈r|σz
1|s〉

=
∑
r

|〈s|σz
1|r〉|2ei(Er−Es)t

 (5)

where |s〉 and the |r〉 are eigenstates of H with energies Es and Er respectively, and 
� = 1. When |s〉 is a highly excited eigenstate, typically the matrix element 〈s|σz

1|r〉 is 
non-vanishing and small for many states r with many dierent energies Er. The sum in 
(5) then contains many incoherent oscillating factors making As(t) decay very rapidly 
in time. However, if there is a state r where both

 1. 〈r|σz
1|s〉 is finite,

 2. Er ≈ Es

then it immediately follows from (5) that the edge coherence time is infinite in the 
large-size limit, as in (4). By Er ≈ Es we mean up to corrections exponentially small in 
system size.
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We will explain precisely the consequences of a strong zero mode in the next sec-
tion 2.2. Here we illustrate the pairing in a simple example, the special case Γ = 0 of 
the Ising chain familiar from the studies of topological order [3]. The eigenstates and 
eigenvalues of the Hamiltonian H0 with Γ = 0 are given by specifying all the eigenval-
ues of the σz

j . The states |+++ · · ·++〉 and | − − − · · · − −〉 are both ground states 
of H0 when J  >  0. They are not eigenstates of spin-flip symmetry, but these are easily 
found:

|g±〉 =
1√
2
(|+++ · · ·++〉 ± | − − − · · · − −〉)

=
1±F√

2
|+++ · · ·++〉

All eigenstates of both H0 and F  can be written in the form

|s±〉 =
1±F√

2
|+±±± . . . 〉

for all 2L−1 choices of the  ±  signs. Since [F , H] = 0 and F2 = 1, the energies obey 
Es+ = Es−. One way of toggling between these degenerate states is simply to measure 
the edge spin. Because σz

1 anticommutes with F ,

〈s±|σz
1|s∓〉 = 1.

Thus in this limit, As±(t) = 1 for all t and s±. This of course is not surprising, given 
there are no o-diagonal terms in the Hamiltonian. What is remarkable is that not only 
does this pairing persist for Γ non-vanishing, but that it also occurs in an interacting 
model, the XYZ spin chain.

2.2. The strong zero mode

In this section we explain how the pairing described above can be understood as 
the consequence of a strong edge zero mode. The best known example of such was 
introduced in Kitaev’s famous paper on unpaired Majorana fermions [3]. Kitaev 
showed that the presence of edge Majorana zero modes led to a twofold degeneracy 
in the ground state and so a topologically protected qubit. The degeneracy is a con-
sequence of topological order in the same way that the usual symmetry-broken order 
leads to ground-state degeneracy in the equivalent transverse-field Ising model. A 
striking feature that Kitaev also noted is that this degeneracy continues throughout 
the entire spectrum, a stronger condition than is necessary for topological order. 
The term ‘strong zero mode’ was coined to distinguish operators which induce 
degeneracy on the entire spectrum from ‘weak zero modes’, which merely act on the 
ground states [13, 17]. Subsequently, such an exact strong edge zero was found in 
the XYZ chain [4]. The XYZ chain is interacting, unlike the Ising/Kitaev chain, but 
still integrable.

The edge-spin coherence (4) arises as a consequence of a strong zero mode [13, 14, 
17, 4]. A strong zero mode is an operator Ψ that maps an eigenstate in one symmetry 
sector to that in another with the same energy up to exponentially small finite-size cor-
rections. Precisely, in our examples Ψ
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 1. almost commutes with the Hamiltonian: [H,Ψ] = E, where the ‘error’ E  is an 
operator with norm |E| < e−αL with α a positive constant,

 2. anticommutes with spin-flip symmetry: {F ,Ψ} = 0,

 3. squares to the identity operator: Ψ2 = 1.

Because [F , H] = 0, eigenstates of H can be organized into sectors with F = ±1. The 
presence of a strong zero mode guarantees that the entire spectrum in the F = 1 sec-
tor is the same as that in the F = −1 sector, up to corrections of order e−αL. Namely, 
eigenstates of H form ‘pairs’ |s+〉 and |s−〉, with Es+ ≈ Es− and |s±〉 ≈ Ψ|s∓〉. Here and 
henceforth  ≈  means equal up to corrections with norm vanishing exponentially fast as 
L → ∞.

The most famous example of a strong edge zero mode is that localised on the edge 
of the Ising chain [19, 3]. We showed at the end of section 2.1 that when Γ = 0, the 
operator σz

1 obeys all three conditions above, and so pairs each eigenstate in the F = 1 
sector with one with F = −1 and the same energy. The fermionic version of the Ising 
Hamiltonian (2) is often known as the Kitaev chain, with the Z2 spin order corre-
sponding to topological order. The operator σz

1 is the Majorana fermion operator on the 
edge, which does not appear in H0 and so commutes with it. In phases with topological 
order, edge zero modes mapping the ground states between each other are common 
(although not necessary). Having Ψ and the resulting degeneracies for all the states is 
thus a much stronger condition, hence the name [17].

A remarkable fact is that the strong zero mode and the degeneracies survive through-
out the ordered phase |Γ| < |J | of the Ising chain. This is quite simple to derive follow-
ing the iterative procedure described in [3, 4], and we review this quickly here. We set 
Ψ(0) = σz

1, since this commutes with H0. However, it does not commute with the full 
Hamiltonian:

[H,Ψ(0)] = 2iΓ σy
1 . (6)

We then need to add a term to the zero mode of order Γ to cancel this; Ψ(1) = (Γ/J)σx
1σ

z
2 

does the trick. However, this now generates a term of order Γ2:

[H,Ψ(0) +Ψ(1)] = 2i(Γ2/J) σx
1σ

y
2 .

This in turn can be canceled by including a term Ψ(2) = (Γ/J)2σx
1σ

x
2σ

z
3, generating a 

new term of order Γ3. Continuing in this fashion gives

Ψ = NIsing

[
σz
1 +

Γ

J
σx
1σ

z
2 +

(
Γ

J

)2

σx
1σ

x
2σ

z
3 + . . .

]

= NIsing

L∑
j=0

(
Γ

J

) j

σz
j

j−1∏
k=1

σx
k .

 (7)

Those familiar with the Jordan-Wigner transformation will recognize each term as a 
Majorana fermion.

The operator Ψ satisfies all three conditions for the strong zero mode throughout 
the ordered phase. Since a single σz

j  appears in each term, it anticommutes with F . 
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Because each term in the expansion (7) anticommutes with each other one, setting the 
normalization to obey

(NIsing)
2 =

1− (Γ/J)2

1− (Γ/J)2L
≈ 1−

(
Γ

J

)2

. (8)

makes Ψ2 = 1. The norm is non-vanishing as L → ∞ when |Γ| < |J |. In this phase, Ψ 
does indeed commute with the Hamiltonian up to an exponentially small correction:

E ≡ [H,Ψ] = 2NIsingΓ

(
Γ

J

)L−1

F σz
L. (9)

Moreover, in this phase, the norm of each term in the expansion (7) decreases quickly 
with j, justifying the name of edge strong zero mode. We of course can construct 
another strong edge zero mode on the other end, by starting with σz

L instead of σz
1. The 

two edge zero modes anticommute with each other, indicating that they are indeed 
Majorana fermionic.

An intuitive way of thinking about the higher terms in the expansion of the strong 
zero mode is that they describe how information initially stored on the boundary 
‘leaks’ into the bulk. All the higher-order terms contain σx

1 and so flip the edge spin. 
Thus they partially, but not completely, decohere the edge spin. Indeed, their presences 
reduces NIsing, and we will see in the next section 2.3 how this reduces the asymptotic 
value of As(∞).

This computation of the edge strong zero mode is easy because the Ising chain can 
be mapped on to a free-fermion model. This result is however not a free-fermionic fluke. 
An analogous operator in the XYZ spin chain was found by this iterative method in [4]. 
The XYZ chain has Hamiltonian

HXYZ =
L−1∑
j=1

[
Jxσ

x
j σ

x
j+1 + Jyσ

y
jσ

y
j+1 + Jzσ

z
jσ

z
j+1

]
 (10)

acting on the L-site chain with open boundary conditions. The spin-flip symmetry F  
commutes with HXYZ, so again the eigenstates can be grouped into two sectors. The 
extreme case Jx = Jy = 0 reduces to the Γ = 0 case of Ising, so this suggest iterating 
starting with σz

1. This yields

ΨXYZ = NXYZ

(
σz
1 −

Jy
Jz

σx
1σ

x
2σ

z
3 −

Jx
Jz

σy
1σ

y
2σ

z
3

+
JxJy
J2
z

(
σz
2 − (σx

1σ
x
3 + σy

1σ
y
3)σ

z
4

)
+ . . .

) 
(11)

The explicit all-orders expression can be found in [4]. Despite the many terms in this 
operator, Ψ2

XYZ = 1 for

NXYZ ≈

√(
1− J2

x

J2
z

)(
1−

J2
y

J2
z

)
 (12)

Thus ΨXYZ is normalizable for |Jx| < |Jz| and |Jy| < |Jz|.
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The XYZ chain is interacting but integrable [20], possessing an extensive number of 
conserved quantities. This existence of the strong zero mode is clearly not independent 
of this fact, but the jury is still out on whether strong zero modes can be constructed 
for all integrable models.

We stress that the pairing arising from a strong edge zero mode is a stronger state-
ment than simply that the states are are degenerate or that they have finite matrix 
element. For example, in a system with no hopping at all but non-zero on-site energies, 
such as in some eective Hamiltonians for many-body localised systems, a single spin 
operator would pair eigenstates in the sense of finite matrix element. However, they 
would be separated by a (possibly large) on-site energy. Conversely, even if the pairing 
due to an edge mode starting at σz

1 were to break down, there is no guarantee that the 
system would no longer have degenerate paired energy levels due to some other, not 
edge-localised, zero mode.

2.3. Edge spin coherence

An infinitely long coherence time for the edge spin results when energy eigenstates in 
dierent sectors pair up as described in section 2.1. The strong zero mode guarantees 
both conditions for the pairing. Moreover, knowing the strong zero mode explicitly 
allows us to compute the leading contribution to the asymptotic values As(t → ∞). 
We find that not only is this value non-vanishing, but independent of the state s, even 
if highly excited.

Precisely, all eigenstates |s±〉 obeying F|s±〉 = ±|s±〉 pair up via

|s±〉 ≈ Ψ|s∓〉 (13)
where as always  ≈  means up to terms exponentially small in L. The matrix element 
〈s+|σz

1|s−〉 is non-vanishing as a consequence. Namely,

〈s±|σz
1|s∓〉 =

1

2
(〈s±|σz

1|s∓〉+ 〈s∓|σz
1|s±〉)

≈ 1

2
〈s±|{Ψ, σz

1}|s±〉,
 (14)

where we exploited the fact that σz
1 is hermitian. However, the leading term in Ψ is 

simply Nσz
1, where N  is the normalization making Ψ2 = 1. Thus

〈s′|σz
1|s〉 = N + corrections. (15)

The order of the corrections depends on the model. For Ising, the corrections are expo-
nentially small (of order 1/JL), because all the terms in Ψ given by (7) anticommute 
with σz

1 except σz
1 itself. For XYZ, the corrections occur at lowest at order 1/J2

z . This 
is because the next term in the explicit expansion (11) of Ψ not anticommuting with σz

1 
is proportional to σz

2, occurring at order 1/J2
z .

We have thus shown when there is a strong zero mode, the magnitude of the bound-
ary magnetization is not only non-vanishing, but independent of s at leading order. 
Since Es+ ≈ Es−, (15), this also guarantees that the coherence time is infinite when 
L → ∞. It is of course possible that other states of close energy have finite matrix 
element and contribute to (5), but these will only increase it further, since all terms 
in the sum only involve the magnitude of the matrix element. It is also possible that 
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there could be finite matrix element between states of dierent energy, thus contribut-
ing oscillating terms not vanishing as L → ∞ and t → ∞. If we ignore such additional 
contributions, we then find for Ising

As(∞) ≡ lim
t→∞

lim
L→∞

As(t) ≈ N 2
Ising ≈ 1− Γ2

J2
 (16)

For the ground states, this was derived long ago [19]. However, the fact that it holds 
for all states with an s-independent value was not previously noted, as far as we are 
aware.

Since (16) is independent of s, it holds true with any initial state, not just eigen-
states of HIsing. Even the ‘infinite-temperature’ autocorrelator is non-vanishing. With a 
slight abuse of notation, we dub this autocorrelator as

A∞(t) ≡ 1

2L

∑
s

As(t). (17)

Using exact diagonalization, A∞(t) is plotted for Γ = 0.3 for very long times in figure 1; 

note that the time axis is logarithmic. We see that initial oscillating pieces die o 

very quickly in time to a long-lived plateau at the value N 2
Ising = (1− (.3)2) = .91. The 

coherence time indeed grows exponentially with increasing L, since the error term E  
has norm decaying exponentially. The plateau falls o at a time roughly 1/|E|, where 
the decay time arises from the ‘error’ in (9). This gives the finite-size dependence of the 
coherence to be

TIsing ∼
1√

J2 − Γ2

(
J

Γ

)L

. (18)

This indeed goes to infinity as L → ∞, but even for rather modest system sizes, the 
finite-size eects do not appear until very long times.

An amusing phenomena apparent at finite sizes and long enough times is that the 
autocorrelator ‘revives’, returning to its initial value. That this is visible in such a plot 
is a consequence of the free-fermion nature of Ising: the energy dierences in all Ising 
pairs are identical, and so sum up coherently at much shorter times than they do in 
an interacting system such as XYZ, illustrated below. Since Ising can be solved, the 
time for the revivals can be computed; this is easily done using the setup of section 2.2 
of [21]. One finds that at finite size each pair s± are split in energy by the identical 
amount ε = Γ(Γ/J)L−1 at leading order in Γ/J . This implies a revival time of order 
1/ε, where the oscillating pieces are back in sync again. Thus in Ising, there really is 
no decay of the plateau: the revival time is of the same order as the coherence time, as 
indeed apparent from figure 1.

For the XYZ chain, we plot A∞(t) from exact diagonalization in figure 2, and indeed 
see the plateaus. Here the leading contribution to autocorrelator at large times is

As(∞) ≈ N 2
XYZ ≈

(
1− J2

x

J2
z

)(
1−

J2
y

J2
z

)
. (19)

We defer a careful discussion of the corrections to section 3.2; for A∞ they turn out 
to be exponentially small as in Ising. The plateau values obtained from the numerics 
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are very close to the those in (19), as is clear from figure 3. This gives a strong sign 
that there is no pairing occurring other than that from the edge mode. Even though 
the XYZ chain is integrable, it is not free-fermionic. Thus the energy splittings are not 
related, and revivals do not appear in A∞.

The fact that the edge coherence time is infinite for all states is by no means an 
obvious consequence of integrability. In an integrable model, there are an extensive 
set of conserved quantities. Whereas boundary conditions could wreck these, this 
does not happen for open boundary conditions (often known in the literature as ‘free’) 
in Ising or XYZ. Certainly the presence of these conserved quantities is related to 
the presence of the strong zero mode and the infinite coherence time. However, they 
do not guarantee that any spin, edge or otherwise, has such coherence. Indeed, if one 
attempted to construct a strong zero mode starting with the operator σz

k with k in the 
bulk of the sample, the procedure quickly breaks down [12] because of the resonances 
described in section 4. Thus in spite of the integrability, in a highly excited eigenstate 
the spins in the bulk of the system very quickly appear as if they thermalize, losing 
all coherence.

Note also that the strong edge zero mode only approximately commutes with the 
Hamiltonian in finite size, as opposed to the usual conserved quantities arising from 
integrability. In fact, it is not at all obvious how it appears inside the usual frameworks 
of integrability, such as the Bethe ansatz. Possibly it is related to the appearance of 
boundary bound states, as discussed in [22, 23]. It would be very interesting both for 
these studies and for those of integrable models to understand better how all of this 
structure fits together.

3. Long coherence time from an almost strong zero mode

Here we show how long but finite coherence times arise. We study the Ising chain (2) 
modified by including two additional types of terms, a nearest-neighbour σx coupling, 
and a next-nearest-neighbour σz coupling. The Hamiltonian is

Figure 1. A∞(t) from exact diagonalization on a log axis for time for Γ = 0.3. 
Revivals appear at a time scale set by the finite size.
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H = HIsing − Γ2

L−1∑
j=1

σx
j σ

x
j+1 − J2

L−2∑
j=1

σz
jσ

z
j+2. (20)

In the fermionic version, the new terms are the simplest four-fermion interactions, but 
as opposed to the XYZ chain, either interaction breaks the integrability. Both per-
turbing operators have dimension 4 at the Ising critical point, and so are irrelevant in 
the renormalization-group sense. We thus expect that for small enough J2 and Γ2, the 
coherence time should remain infinite for all eigenstates s whose energy density is the 
same as that of the ground state. This is not surprising, since if all the couplings other 
than J are small, the model is ordered.

The consequences for the excited states, however, are much more surprising. We 
plot A∞(t) with a log time axis in figure 4 for several small values of Γ2, with J  =  1 and 
Γ = 0.05. While As(t) does eventually approach zero, it takes a very long time to do so. 
For small Γ2, the edge spin coherence time can reach millions of time steps (in units of 
1/J), even for the system sizes accessible by exact diagonalization.

An even richer story arises for J2 �= 0. At small J2, the behaviour is similar to that 
for small Γ2. However, for larger values, the behaviour is completely dierent, as is 

Figure 2. A∞(t) for XYZ from exact diagonalization on a log axis for time for 
L  =  14, Jx  =  0.2, Jy  =  0.3, Jz  =  1.

Figure 3. A∞(10) for XYZ from exact diagonalization as a function of Jx = Jy for 
Jz  =  1 and L  =  14, compared with the analytic estimate from (19).
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clear from figure 5. The edge coherence time does not gradually decrease as J2 increases. 
For example, at J2  =  .5J, the plateau is short-lived, whereas at J2  =  .7J the decay time 
is similar to that at J2  =  .3J, in the billions of time steps. At J2  =  J, the decay is quick. 
Furthermore, the behaviour of A∞(t) is qualitatively the same for negative J2, despite 
there being frustration in the low-lying states. Clearly there is more to the story than 
just integrability breaking.

3.1. Iterating and normalizing

Given the results for Ising and XYZ, the obvious next step is to try using the itera-
tive procedure to find a strong zero mode. Consider first the case with J2  =  0. The Γ2 
coupling is a disordering term like Γ, and does not commute with J. In fact, if Γ = 0 
as well, then (20) reduces to the XYZ chain with Jy  =  0 and Γ2 = Jx. It is thus natural 
to treat Γ2 as a further perturbing term on the same order as Γ, and indeed to first 
order in perturbation theory the pairing between sectors persists [24]. In both Ising 
and XYZ cases, the strong zero mode starts with Ψ(0) = σz

1. Starting with that here 
means the first correction must be the sum of those in Ising and XYZ: 

Ψ(1) =
Γ

J
σx
1σ

z
2 −

Γ2

J
σy
1σ

y
2σ

z
3 .

However, now [H,Ψ(0) +Ψ(1)] is considerably more complicated than in the Ising or 
XYZ cases, containing five operators proportional to ΓΓ2. It however, is still possible to 
find a Ψ(2) that cancels all these terms. It is

Ψ(2) =− ΓΓ2

J2
(σx

1σ
y
2σ

y
3σ

z
4 + σx

1σ
z
3 + σx

2σ
z
3 + σy

1σ
y
2σ

x
3σ

z
4)

+
Γ2

J2
σx
1σ

x
2σ

z
3 +

Γ2
2

J2
σy
1σ

y
2σ

y
3σ

y
4σ

z
5 .

 
(21)

Then [H,Ψ(0) +Ψ(1) +Ψ(2)] is of third order in Γ,Γ2.
Despite how complicated this is, the procedure still works. At each step, one must 

solve the equation

Figure 4. A∞(t) for perturbed Ising from exact diagonalization on a log axis for 
time for L  =  14, Γ = 0.05, J2  =  0.
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[H,Ψ(0) +Ψ(1) + · · ·+Ψ(n−1)] = −J [V,Ψ(n)], (22)

where V =
∑

j σ
z
jσ

z
j+1. The non-trivial step in finding Ψ(n) is therefore the inversion of 

the operation [V, ·]. There is no guarantee that it is invertible: the null space, the set of 
operators commuting with V, is exponentially large. For example, it includes any func-
tion of the σz

j . Moreover, even if a Ψ(n) can be found, it is not unique: any operator in 
this null space may be added onto Ψ(n) without changing its commutator with V. This 
turns out to be quite a feature, because such an addition will not commute with the 
full H. Thus it does change the equation that determines Ψ(n+1), allowing one to search 
for a particular choice that makes [V, ·] invertible here. For example, for the XYZ case, 
this is responsible for the σz

2 term appearing in (11). We find that in perturbed Ising, 
like in XYZ, there is a unique choice of such a term at order n to make the equation for 
Ψ(n+1) solvable.

With the help of a Python program to do the algebra, we have implemented this 
procedure successfully to 7th order for J2  =  0, 11th order when Γ2 = 0, and 6th order 
when both Γ2 and J2 are included. The fact that this iteration is possible is highly non-
trivial; as mentioned above, if one starts iterating instead with σz

j  with j �= 1 or L, the 
procedure breaks down instantly. Although starting at the edge works, the number of 
terms explodes dramatically compared to the integrable cases. At 8th order, there are 
68 368 terms in the expansion, as compared to 9 terms at the same order for Ising.

Another criterion for a strong zero mode is that Ψ2 = 1. Again using the computer 
to do the algebra, we find that to the order we know Ψ, the square Ψ2 is indeed pro-
portional to the identity operator. This quite remarkable cancellation allows us to to 
define the normalization as the coecient N  that makes N (Ψ(0) +Ψ(1) + . . . ) square 
to 1. To fourth order

N−2 =1 + Γ2 + Γ2
2 + Γ4 + 3Γ2J2

2 − 8Γ1Γ
2J2

+ 4Γ2
2Γ

2 + 6Γ2
2J

2
2 + Γ4

2 + . . . ,

where J2  =  1. The coecients increase further at higher orders. The normalization as a 
function of Γ = Γ2 and J2  =  0 for various truncations is plotted in figure 6. We also plot 
the two-point correlator in the ground state, which shows the usual quantum phase 

Figure 5. A∞(t) for perturbed Ising from exact diagonalization on a log axis for 
time for L  =  14, Γ = 0.05, Γ2 = 0. Notice the non-monotonicity in J2.
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transition occurs at Γ = Γ2 ∼ 0.4. We see that it is plausible that the norm remains 
non-zero even as L → ∞ throughout the ordered phase, although we stress that this is 
not necessary for any of our arguments below to hold.

3.2. The error term

The preceding gives good evidence that despite the enormous number of terms, the 
iterative procedure works for the perturbed Ising model. At every order, one presum-
ably can find another term that cancels the error when commuted with V. This very 
possibly yields a normalizable operator that squares to the identity. However, it does 
not guarantee that the norm of the error term vanishes exponentially with system size, 
as is necessary to get the pairing. It is straightforward to see that this does not hap-
pen here. In fact, it does not go to zero at all, but instead there exists some order n* 
(depending on the couplings) where including Ψ(n∗+1) and higher terms in the expansion 
increases the error.

We define the error at each order as

En = [H,Ψ(0) +Ψ(1) + · · ·+Ψ(n−1)]. (23)

This of course is the error used to determine the strong zero mode at next order in the 
recursion relation (22). We then define n* as the lowest value such that

|En∗+1| > |En∗ |, (24)
where we use the trace norm |En|2 ≡ Tr(E†

nEn). Under this definition, n∗ → ∞ for Ising.
Using the explict expressions for Ψ(n) allows us to compute the error En to the 

same order. We find that when J2  =  0, the maximum errors occur roughly at Γ2 = Γ, 
not surprisingly as the strong zero mode is exact for ΓΓ2 = 0. We thus plot En for 
various Γ = Γ2 in figure 7; the lines are there to make the trends clear. The trunca-
tion point n* for given couplings is simply the minimum of the corresponding curve 
as a function of n. For example, when Γ = Γ2 ≈ 0.25 the expansion must be truncated 
at n*  =  7. Plotting the same graph for J2 = Γ and Γ2 = 0 gives qualitatively similar 
results.

Figure 6. The normalisation N  for Γ = Γ2 and J2  =  0 plotted at dierent truncation 
orders, compared with the two-point correlator in the ground state from DMRG 
with L  =  100.
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3.3. The almost strong zero mode

There is no strong zero mode in the perturbed Ising model. This is in accord with 
the numerics: a strong zero mode would have required an infinite coherence time as 
L → ∞. However, not only does the iterative procedure work, but it yields an operator 
that such that when squared, thousands of complicated terms cancel, giving the iden-
tity to the order truncated. This striking behaviour hardly seems meaningless. We thus 
define an almost strong zero mode by truncating the expansion at n*:

Ψ∗ = N∗

n∗∑
n=0

Ψ(n), (25)

where N∗ is determined by requiring Ψ2
∗ = 1. By generalizing the arguments in sec-

tion 2.3, we show here that the almost strong zero mode implies the long but finite 
coherence time seen in the numerics. Moreover, (N∗)

2 is the leading contribution to the 
height of the plateau in A∞(t).

Since the error term does not vanish, the eigenstate pairs with finite a σz
1 matrix 

element no longer survive the L → ∞ limit. However, the almost strong zero mode 
still results in relations between dierent states (but not both eigenstates). We define a 
partner |ψs〉 for each eigenstate |s〉 by

|ψs〉 ≡ Ψ∗|s〉. (26)
As in (14), the partner has non-vanishing matrix element with |s〉:

〈ψs|σz
1|s〉 =

1

2
〈s|{Ψ∗, σ

z
1}|s〉

= N∗ + corrections.
 (27)

The partners are the paired states when n∗ → ∞, but when n* is finite, they are not: 
the partner ψs is not an exact eigenstate of H because of the non-vanishing error term. 
The important fact though is that the corrections are at order n*:

H|ψs〉 = HΨ∗|s〉 = Es|ψs〉+ En∗ |s〉 ∼ Es|ψs〉,

Figure 7. |En| as a function of truncation order n.
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where  ∼  means up to terms of order 1/Jn∗+1. Having (Ψ∗)
2 ∼ 1 means that 〈ψr|ψs〉 ∼ δrs 

and the |ψs〉 form a complete linearly independent set of states. Inserting this set into 
the expansion for As(t) analogously to (5) yields

As(t) ∼
∑
r

〈s|σz
1|ψr〉〈ψr|e−iHtσz

1e
iHt|s〉

∼
∑
r

|〈s|σz
1|ψr〉|2ei(Es−Eψr)t.

 (28)

Neglecting the finite error terms means we have neglected energy dierences of 
order |En∗ |. The consequence is that using (27) in (28) implies a long but not infinite 
coherence time. For times long enough for the oscillating pieces to cancel, but shorter 
than 1/|En∗ |, we expect a plateau with

As

∣∣
plateau

∼ (N∗)
2 + corrections. (29)

It follows from (21) that here the corrections are of order ΓΓ2/J
2. For A∞(t), they are 

smaller. Using the Cauchy-Schwarz inequality gives
∑
s

|〈s|{Ψ∗, σ
z
1}|s〉|2 �

1

2L
Tr({Ψ∗, σ

z
1})2.

This trace necessarily vanishes for all terms other than diagonal ones, because they 
are comprised of tensor products of Pauli matrices. The diagonal ones are positive, so 
the corrections to A∞(t) are of order n*  +  1:

A∞
∣∣
plateau

� (N∗)
2. (30)

To check these assertions, we compute A∞(t) using exact diagonalization at L  =  14. 
As in the XYZ case in figure 3, we compare the plateau values with N 2

∗  for various 
n* in figure 8, and find that the estimate is fairly accurate. We find that typically the 
plateau is longer lived than 1/|En∗ |. For example, for Γ = Γ2 = 0.25, we see from figure 7 
that |En∗ | ∼ 0.025J , while it is clear from figure 9 that there is appreciable coherence at 
times longer than 1000/J steps.

Another compelling check that the non-vanishing error term results in the finite 
decay time comes from showing A∞(t) is independent of L at large enough sizes. This 
requires care to see using exact diagonalization; because the support of Ψ∗ involves 
2n*  +  1 spins, for most couplings finite-size eects cause the decay before the finite n* 
does. Since n*  =  7 for Γ = Γ2 = 0.25, we plot A∞(t) here in figure 9 for various system 
sizes. Happily we do see saturation: the curves for L  =  12 and L  =  14 are virtually iden-
tical. This is a good sign that the physics we are describing is not simply a small-sizes 
phenomenon.

A long (albeit finite) edge coherence time thus is possible even without the exact 
pairing arising from the exact strong zero mode. To check this scenario further, we 
numerically found all the energy eigenstates s±. For each s+ , we then find the state s− 
with the maximum magnitude of the matrix element 〈s∓|σz

1|s±〉, and average this maxi-
mum over all states s+ . We found explicitly that this average clearly is heading to zero 
as L increases, as the lack of a strong zero mode would imply. However, the long coher-
ence time still survives. In figure 10, we plot both A∞(t) and the contributions to it 
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coming solely from the pairs of maximum matrix element in the sum in (5). Obviously, 
these two dier at very short times where the oscillating terms do not all cancel, but 
for small enough Γ2, the two curves agree almost exactly at larger times. This indicates 
that at small system sizes and couplings, the dominant contribution to A∞(t) indeed 
comes solely from the paired states. However it is also clear that for larger Γ2 there are 
long-lived contributions which do not stem from the paired states. These presumably 
are the contributions coming from the partners as described above.

4. Resonances and poles

The two numerical checks presented in figures 8 and 9 provide convincing evidence that 
the almost strong zero mode is the physics underlying the long edge spin coherence 
time when Γ2 is small. All the issues discussed in the previous section are also relevant 
to the J2 �= 0 case as well. However, we find some additional interesting behaviour here 
as well, such as that in figure 5, where the dependence of the decay time on J2/J clearly 
is not monotonic.

Figure 8. A∞(10), the plateau height, for L  =  14 and J2  =  0 from exact 
diagonalization, compared with the estimate.

Figure 9. A∞(t) for Ising with Γ = Γ2 = 0.25 from exact diagonalization. Notice 
the curve saturates with L.
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We show here that this behaviour is a consequence of the phenomenon described 
in [14, 12]: at certain values of J2/J, it becomes ‘easy’ to flip the boundary spin, and 
so the boundary coherence is lost quickly. Correspondingly, processes at low orders in 
perturbation theory flip the boundary spin without costing any energy. This behav-
iour shows up as poles at low orders in the expansion of the almost strong zero mode 
[13], thus obviously rendering the process invalid at this order. For J2 �= 0 the error 
coming from the resonances typically dominates the error described in the previous 
section.

4.1. Degeneracies in perturbation theory

The physics resulting from J2 �= 0 in (20) is dierent from that coming from Γ2 �= 0. 
The latter is a disordering term like the transverse field, and so qualitatively does not 
change the physics of the ground state, as long as it is not made too large. It mainly 
makes its presence felt in excited-state behaviour. Conversely, J2  >  0 favours aligning 
next-nearest-neighbour spins, while J2  <  0 favours anti-aligning them. The latter inter-
action competes with the ordering favoured by the J term, which no matter its sign, 
favours aligning spins two sites apart. Thus the physics of the ground state can and 
does change dramatically if J2  <  0 and J2/J is finite.

We will see that the physics of the highly excited states does not depend much on 
the sign of J2. It does depend quite strongly on the magnitude of J2/J, and simple per-
turbative arguments in the fashion of [14] explain why. The physics does not depend on 
the sign of J (redefining every other spin by a spin flip maps J → −J ), so for simplicity 
we take it positive. As before, we keep |Γ/J | and |Γ2/J | small, but here we allow J2/J 
to take on any value. Thus the disordering terms remain small relative to the ordering 
terms. We write the large terms as the ‘potential’ 

Figure 10. A comparison of A∞(t) calculated using all contributions (solid line) 
and only those from paired eigenstates (dashed line) for L  =  14, Γ = 0.05.
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V = −J
L−1∑
j=1

σz
jσ

z
j+1 − J2

L−2∑
j=1

σz
jσ

z
j+1. (31)

The eigenvalues Vs of V are the energies when Γ = Γ2 = 0.
In the ordered phase, it is convenient to describe the states of the system in terms of 

domain walls. A domain wall occurs when two adjacent spins are dierent; all the states 
of the system can be labelled simply by specifying the domain walls, and a single spin. 
For Γ = Γ2 = 0, the two states with no domain walls are the ground states |g1〉 and |g2〉, 
with energies Vg1 = Vg2 = −J(L− 1)− J2(L− 2) ≡ Vg. A single (or isolated) domain 
wall away from the edges has potential Vg + 2(J + 2J2). It is thus immediately appar-
ent how frustration changes the ground states at J2 ≈ −J/2, because creating a domain 
wall lowers the energy. This indicates a quantum phase transition at around this value, 
familiar from the studies of frustrated magnets. In general Vs = Vg + 2(n1J + n2J2), 
where n1 is the number of broken J-bonds (dierent nearest-neighbour spins) and n2 the 
number of broken J2 bonds (dierent next-nearest neighbours).

These configurations are mixed by including the single-spin-flip term with coecient 
Γ. The two ground states mix first at Lth order in perturbation theory in Γ, because it 
takes L spin flips to get between |+++ . . .〉 and |− − − . . .〉. Moreover, the intermediate 
states have at least one domain wall, and so are of potential at least 2(J  +  J2). Thus 
Eg1 ≈ Eg2, i.e. the splitting between the ground-state energies is of order (Γ/J)L. For 
J2  =  0, the same argument applies to states with domain walls. The resulting degenera-
cies are exactly those of the type arising from the Ising strong zero mode.

However, at specific nonzero values of J2, this behaviour changes dramatically. 
Consider these two configurations, identical except for the edge spin:

↑ ↑ ↓ · · · ⇔ ↓ ↑ ↓ · · · . (32)
In the left configuration a single domain wall is near (but not next) to the edge; in 
the right the two domain walls are as close as possible to an edge. The three spins on 
the left contribute 2(J  +  J2) to the potential, since it has one broken J-bond and one 
broken J2-bond. On the right, the contribution is 2(2J ), since there are two broken 
J-bonds and no broken J2 bonds. Thus in the special case J2  =  J, both configurations 
have the same potential. Moreover, flipping the boundary spin relates the two at first 
order in perturbation theory in Γ: a domain wall can be created at the edge without 
changing the potential. Thus at J2  =  J the energies of these two states, and for that 
matter, all one-kink states, are not exponentially close, but rather dier by a power 
of 1/L. Power-law splitting between states means that there is no pairing or partner-
ing, so that the edge spin coherence time is not long. Indeed, we see in figure 5 that 
at J  =  J2 the decay time is very small. The same behaviour occurs for J2  =  −J as well, 
the ground states here being |− −++−−++ . . .〉 and the flipped version. Again, a 
single spin flip at the boundary relates excited states and the almost strong zero mode 
does not occur.

This behaviour is sometimes called a ‘resonance’ [12]. There are many other degen-
eracies involving configurations with more domain walls, requiring more spin flips to 
go between them. Thus they will aect perturbation theory at higher orders. The 
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almost strong zero mode provides a useful tool in finding these degeneracies, and so we 
describe them next.

4.2. Poles in the strong-zero-mode expansion

We have just seen that when J2/J is finite, it can be ‘easy’ to flip a spin at the edge, 
in the sense that at low orders in perturbation theory this flip connects degenerate 
configurations. Here we show how the strong-zero-mode expansion provides a system-
atic way of understanding at which orders in perturbation theory in Γ such behaviour 
happens. We treat both the J2 and J terms as large, as opposed to section 3. For con-
venience set Γ2 = 0 for the most part. Including a Γ2 term in the presence of Γ �= 0 
does not change the story qualitatively, because the double spin flip from the former 
appears at second-order perturbation theory in the latter. At most its presence changes 
the order at which a resonance appears.

The zeroth order term remains Ψ(0) = σz
1, since it still commutes with both of the 

ordering terms. Commuting it with the transverse field yields (6) as for Ising. We then 
find Γ(1) as in (22), by inverting the large terms in the Hamiltonian. Here, however, 
this requires inverting [V, ·], including the next-nearest-neighbour interactions. For par-
ticular values of J2/J, this may be impossible, because of extra operators in its null 
space. Indeed,

Ψ(1) =
Γ

J2 − J2
2

σx
1

(
Jσz

2 − J2σ
z
3

)
.

The pole means the expansion collapses for J2 = ±J.
This relates beautifully both approaches, illustrating that poles in the strong-zero-

mode expansion correspond to processes where flipping the spins at and near the edge 
relates degenerate configurations [14]. The order in the expansion at which a pole 
occurs is the same order at which the corresponding easy boundary-spin flip occurs in 
perturbation theory. The location of the pole gives the coupling where this resonance 
process occurs. Moreover, the terms with a pole point to the corresponding easy bound-
ary spin flip. For example, both terms in Ψ(1) contain σx

1, while the other two involve 
σz
2 and σz

3. This suggest we look at configurations with domain walls between spins on 
these sites. One is thus led very quickly to the configurations illustrated in (32) when 
J2  =  J, and to the similar ones occurring when J2  =  −J.

The nasty expressions for Ψ(n) can be computed with the aid of our Python pro-
gram. At second order in Γ we find

Ψ(2) =
JJ2Γ

2

(J2 − J2
2 )

2
σz
1σ

z
2σ

z
3 +

Γ2

(J2 − J2
2 )

2(9J2 − J2
2 )
σx
1σ

x
3

[
2J2J2

2σ
z
2σ

z
4σ

z
5 + 2J2J2

2σ
z
1σ

z
3σ

z
5 − 6J3J2σ

z
1σ

z
3σ

z
4

+ 2J2J2
2σ

z
1σ

z
2σ

z
3σ

z
4σ

z
5 − JJ2

(
J2
2 − 3J2

)
(σz

2 + σz
4 − σz

1σ
z
2σ

z
3) + J2

2

(
J2
2 − 7J2

)
σz
5

]

+
Γ2

(J2 − J2
2 )(J

2 − 4J2
2 )
σx
1σ

x
2

[
−JJ2σ

z
1σ

z
2σ

z
3 − JJ2σ

z
4 + 2J2

2σ
z
1σ

z
2σ

z
4 +

(
J2 − 2J2

2

)
σz
3

]
.

New poles at J2 = ±J
2
 and J2 = ±3J are immediately apparent. The poles in the con-

siderably nastier expression for Ψ(3) are at J2  =  J/3, J2  =  3J/2 and J2  =  5J. It is not 
dicult to find the corresponding processes that flip the boundary spin without changing 
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the energy. The terms in Ψ(2) with a pole at J2  =  3J contain spin-flip terms σx
1σ

x
3 , and 

otherwise sample up to the fifth lattice site. This indicates the configurations that have 
the same energy when J2  =  3J are related by flipping the first and third spins. They are

↑ ↑ ↑ ↑ ↓ · · · ⇔ ↓ ↑ ↓ ↑ ↓ · · · J2 = 3J, (33)
Likewise, the two configurations

↑ ↓ ↓ ↑ · · · ⇔ ↓ ↑ ↓ ↑ · · · J2 =
J

2
. (34)

have potentials 2(2J  +  2J2) and 2(3J) respectively, equal at J2  =  J/2. They are related 
by flipping the first two spins, with the corresponding pole terms in Ψ(2) indeed contain-
ing σx

1σ
x
2 . It is worth noting that when Γ2 �= 0, this process occurs at first order, so that 

a term with coecient proportional to Γ2/(J − 2J2) appears in Ψ(1).
The above arguments readily generalize to find other degenerate states related by 

spin flips at and near the edge. For example, for J2  =  rJ for r any odd integer, we have:

↑ ↑ ↑ ↑ · · · ↑ ↑︸ ︷︷ ︸
r+1 up spins

↓ · · · ⇔ ↓ ↑ ↓ ↑ · · · ↓ ↑︸ ︷︷ ︸
r+1 alternating spins

↓ · · ·

These are related by the spin flips σx
1σ

x
3 · · · σx

r . This process creates r domain walls 
(broken J bonds), while decreasing the number of broken J2 bonds by one by mak-
ing the spins at sites j  =  r and r  +  2 the same. The resulting change is potential is 
∆V = 2(rJ − J2), which indeed vanishes when J2  =  rJ.

The poles for J2  =  J/r for r an integer are interesting, since they enable a conjecture 
for asymptotic formula for the decay time valid when J2/J is small [25]. First consider a 
configuration with the maximum number of broken J2 bonds within the first 3(r  +  1)/2 
spins:

↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ · · ·︸ ︷︷ ︸
3(r+1)/2 spins

For r odd, act on this with the flips σx
1σ

x
4 · · · σx

(3r−1)/2. This decreases the number of bro-
ken J2 bonds by r, because flipping the first spin heals one J2 bond, while the remain-
ing (r  −  1)/2 flips heal two bonds each. This process increases the number of broken J 
bonds (i.e. the number of domain walls) by one, since flipping the first spin creates one 
domain wall, while the remaining flips do not change the number, but rather just move 
a domain wall. Thus for this process the change in potential is ∆V = 2(J − rJ2), indeed 
giving a resonance at J2  =  J/r for r an odd integer. Similarly, for r an even integer, 
consider the configuration

↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↑ · · ·︸ ︷︷ ︸
3r/2 spins

which also has the maximum number of broken J2 bonds. Here the combination of flips 

σx
1σ

x
2σ

x
5σ

x
8 · · · σx

3(r−2)/2 gives the same ∆V = 2(J − rJ2). Thus there are poles in the zero 
mode expansion at J2  =  J/r for all r.

These are not the unique processes yielding poles at J2  =  J/r. The preceding pro-
cess for r  =  3 occurs only in Ψ(4), whereas the pole at J2  =  J/3 in Ψ(3) involves σx

1σ
x
3σ

x
4 . 

However, degeneracies giving resonances at J2  =  J/r occur only for states whose energy 
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grows with r as rJ. The reason is that one needs at least r broken J2 bonds in one of 
the states to have this degeneracy, and this implies at least r/2 broken J bonds in 
that state. Thus the splitting due to the higher order poles occurring at J2/J small 
only should aect highly excited states, i.e. those whose energy density relative to 
the ground state is nonzero. This is in accord with our argument that for small J2 the 
pairing with exponentially small splitting should still persist for eigenstates with zero 
energy density.

4.3. The eect of the resonances

The resonances and the ensuing poles are a generic property for Hamiltonians with two 
dierent ordering terms. Given the plethora of processes occurring for a large number 
of broken bonds near the boundary, it is natural to expect that the poles occur at all 
rational values of J2/J. For most values, however, the poles will presumably occur at 
very high orders in perturbation theory, and the arguments in section 3 show that the 
expansion must truncated at some finite n* already. Thus one might hope that the poles 
can be handled by truncating the expansion before the pole occurs. A worry though is 
that even if one tunes J2 away from a pole (say to J2/J irrational), nearby poles will 
make the norm of the error term large, and destroy the edge coherence quickly. We 
use exact diagonalization here to indicate that this worry is unfounded. In fact, we find 
that when Γ2 = 0, the edge spin coherence time is quite large as long as J2 is not very 
close to a low-order pole.

We first check that, although the resonances drastically decrease the matrix ele-
ments between the paired eigenstates at the poles, at other values of the couplings the 
matrix elements remains large at the sizes we can access with exact diagonalization. 
In figure 11, we compute the matrix element 〈s|σz

1|s′〉 for all s, s′, find the maximum 
magnitude for each s, and then average this value over all s, that is:

1

2L

∑
s

[
max
s′

〈s|σz
1|s′〉

]

At the small value Γ = 0.05 the pairing away from the poles is almost perfect, and 
that the decrease in pairing even for the second order pole with system size is very 
slow. Presumably at larger system sizes the eects of more poles will appear, but in 
between poles the matrix element will still be substantial. Note that this graph is also 
symmetric about J2  =  0, indicating that this structure is independent of the dierent 
ground-state physics occurring when J2 is antiferromagnetic. This plot is a strong sign 
that the resonances are the dominant eect for non-vanishing J2.

If the paired states shown in figure 11 had exactly the same energy, the edge coher-
ence time would survive as long as the pairing does. However, it does not. Recall that 
in figure 1 we observed ‘revivals’ in A∞(t) at long time scales because all the energy 
dierence between paired states were the same (due to a quirk of free fermions). This 
illustrates clearly the idea that it is not the energy dierences of paired states that 
cause a decay to zero in A∞(t), but rather their variance, as it is this variance which 
drives dephasing. In order to investigate more closely the eects of the resonance on 
the coherence time of the edge spin, we introduce the paired energy-dierence variance 
(PEDV). We define the pair of the eigenstate s as the eigenstate s′ that maximises the 
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matrix element of σz
1 between them. For each we pair we find the energy dierence 

∆s ≡ Es − Es′. The PEDV is the variance of all these energy dierences, where the 
average is over all eigenstates. As well as indicating how consistently an almost strong 
zero mode starting with σz

1 pairs the energy spectrum, the inverse of the PEDV gives 
an estimate of the time scale on which the decay from the plateau at N 2 occurs.

The PEDV is a much more sensitive probe of the resonances than the pairing, and 
is plotted for the J2 large case in figure 12. The peaks in the energy dierences mea-
sured by the PEDV occur precisely at the couplings with poles in the strong zero mode 
expansion. Not only are the first- and second-order poles visible but so are the third-
order poles at J  =  J/3, 3J/2 and at the larger system sizes even fourth-order poles at 
J2  =  J/4 and 3J/4. Away from the peaks/poles the PEDV exponentially decreases with 
system size. Notice the log scale on the y axis: this structure in the PEDV traverses 
almost 30 orders of magnitude! This is the finite-size behaviour of an exact strong zero 
mode, as we checked by computing the PEDV for XYZ. Of course, we do not expect 
this exponential decrease to survive in the L → ∞ limit, where presumably all points 
lie arbitrarily close to a pole.

On the other hand, close to the poles the PEDV appears to saturate with L. 
Importantly, the peaks are not increasing in height or width. The width of the peak 
aects how far away from a pole we must tune the couplings in order to avoid its eect. 
It is clear from figure 12 that the width converges with L—all the curves of dierent L 
intersect when they transition from finite-size behaviour (exponentially decreasing with 
L) to resonant behaviour. Moreover, the width depends on the couplings as

width ∼ 2
J2
J
Γ

as is clear from figure 13.
This behaviour may be explained heuristically by the following argument. The 

resonances are caused by easy edge-spin-flip processes that convert between between 
states with the same potential by exchanging J and J2 bonds. When we plot the 
PEDV against J2, we are implicitly testing edge-spin flip processes where we know the 
energy of the J2 bonds we are sending in, but are aected by the energy uncertainty 
of produced J bonds. Moreover, for non-zero Γ domain walls have a finite lifetime and 

Figure 11. The mean of the maximum σz
1 matrix elements between eigenstate 

pairs for Γ = 0.05. The resonances are clearly visible.
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converts one J2 bond to three J bonds, each with associated energy uncertainty Γ. We 
thus expect the half-width of the pole in J2 to be 3Γ. Likewise, at J2  =  J/2 we convert 
two J2 bonds to one J bond, so the half-width is reduced to Γ/2. In general we thus 
expect the half-width to be ΓJ2/J , as the data indicate.

At large values of Γ the peaks widen and begin to merge, so the estimate for the 
width of the PEDV peaks breaks down. For the J2  =  0 case, the strong zero mode seems 
to go away at roughly the value of Γ where the phase transition to a disordered phase 
occurs. The same is likely true here as well, as long as a resonance has not already 
killed it.

The fact that the PEDV curves for dierent L intersect suggest that the peak height 
also saturates with L. A closer look at the first order pole at J2  =  J in the inset of 
figure 12 reveals the log scale is hiding a substantial (but not exponential) decrease in 
the peak of the pole with L. However, at larger system sizes, saturation of peak height 

Figure 12. The PEDV (see text) calculated for Γ = 0.05 using exact diagonalisation. 
Inset: The height of the first order peak in PEDV at J2  =  J plotted against system 
size.

Figure 13. The width of the first- and second-order poles in the PEDV as a 
function of Γ from exact diagonalisation (points) and the theoretical prediction 
2ΓJ2/J (lines).
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does appear to occur. This implies that the decay time of the autocorrelation of the 
edge spin A∞(t) will also saturate with L at and near the poles, rather than increasing 
exponentially (as it would if there were an exact strong zero mode), or decreasing (as it 
would if there were not even an almost strong zero mode).

It is important to stress that we have discussed pairing and partnering stemming 
from operators at the edge. However, pairing in the energy spectrum could result 
from another, not edge-localised (or even local) operator. For example, at the pole at 
J2  =  J it turns out that although the pairing due to σz

1 dies, the pairing due to σz
2 is 

large. Indeed, if one starts the strong zero mode expansion with σz
2, it is even more 

complicated, but it does lack the pole at J2  =  J. This is simple to understand by refer-
ring back to (32) and noting that there are no easy ‘edge’ spin-flip processes that flip 
σz
2. Thus our results do not preclude long coherence times for other quantities when 

J2  =  J.
One final note: the PEDVs here are calculated for small Γ and large J2, which imply 

the existence of two very dierent scales. Widely separated scales can lead to spurious 
signs of localization in small-size numerics coming from ‘minibands’, gaps in the den-
sity of states [26]. We also observe minibands in our numerics. These are most promi-
nent when J2 is a rational (or even more so, an integer) multiple of J, as this reduces 
the number of minibands possible. Nevertheless, we are confident that the physics we 
describe is independent of these minibands. One reason is that minibands occur at any 
rational J2/J, whereas our phenomena depend strongly on which particular rational 
value. Another is that when we replace the Γ term by the Γ2 term and repeat the 
calcul ation, we find the poles change in position and relative magnitude exactly as 
predicted by the strong-zero-mode expansion. This behaviour is not explained by any 
miniband structure, which should not depend on which disordering term is used, but 
only the magnitude.

5. Conclusion

We have demonstrated that at the edge of certain spin chains, quantum coherence 
is preserved for long times. This holds because of, not in spite of, strong interactions 
between the spins. The ground state must be ordered, but the long coherence times 
occur even if the initial state is at infinite temperature. Although in some ways the 
physics resembles that arising in many-body-localization, the systems we analyse have 
no disorder.

This behaviour arises because of the presence of an almost strong zero mode. This 
operator is localized at the edge, and almost commutes with the Hamiltonian. When 
spins are mapped to fermions via the Jordan-Wigner transformation, order becomes 
topological order, and an edge zero mode guarantees the ground-state degeneracy. The 
consequences of a strong zero mode are even more dramatic: it implies an intimate rela-
tion between states in dierent symmetry sectors, and this relation underlies the long 
coherence time.

Many interesting directions remain to be explored. The unusual properties of the 
strong zero mode first became apparent in studies of parafermionic systems [13, 14], 
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but it is still not clear even in the integrable cases whether or not the strong zero mode 
is in general almost or not. Certainly resonances appear, and this and other properties 
have been analysed [15].

The system studied in [27] is similar to the perturbed Ising model studied in this 
paper, in that it not integrable and can be expressed in terms of Majorana fermions 
with four-fermion interactions. That of [27] is particularly interesting in that there 
are potentially two zero modes at each edge, so that there can be a qubit, a two-state 
system at each edge. Many of the same considerations, in particular the destruction 
of coherence by the resonances at some couplings, apply. These will be analysed  
in [25].

At a surface level, our results clearly resemble those coming from prethermalization, 
in that certain physical quantities take a long time to reach their equilibrium state. At 
a deeper level, both types of phenomena have at their heart an almost conservation law 
or laws. Understanding generally how the strong zero mode relates to integrability is 
very much still an open problem, but the connection to prethermalization is likely to 
shed a great deal of light on the situation. This connection can be made precise by uti-
lizing the rigorous approach of [2] to prethermalization, and these results are detailed 
in [16].
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