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In strongly frustrated systems, competing interactions can conspire 
with quantum fluctuations to prevent classical order down to zero 
temperature. In an antiferromagnet, frustration allows magnetic 

moments to evade the formation of conventional long-range order, 
leading to the magnetic analogue of liquid phases. Such quantum 
spin liquids are characterized by long-range entanglement and can 
exhibit a panoply of exotic properties, ranging from emergent gauge 
fields and fractionalized excitations to robust chiral edge modes1–3. 
Definitively finding and characterizing such an exotic paramagnet 
remains one of the outstanding challenges in strongly interacting 
physics.

When antiferromagnetic interactions are short-ranged, frustra-
tion relies on geometry; for example, lattices containing plaquettes 
with an odd number of sites may frustrate Néel order. This route 
is most pertinent in solid-state magnets, where exchange interac-
tions are short-ranged, and has led to the discovery of a number 
of exciting spin liquid candidates in layered two-dimensional Mott 
insulators3–7. An alternative route to frustration is provided by 
longer-range interactions8–13. An array of numerical studies have 
demonstrated that adding farther-neighbor couplings can destabi-
lize classical order and lead to spin liquid phases; in addition, par-
ent Hamiltonians for spin liquids have been constructed using 1/r2 
interactions10,13. Unfortunately, liquid phases are often found only 
for a narrow range of farther-neighbor couplings comparable to the 
nearest-neighbour exchange, making it challenging to identify rel-
evant physical systems.

The recent emergence of dipolar quantum materials14–16 and 
polar-molecular gases opens new routes toward long-range interac-
tions17–20. In contrast to both their atomic cousins and conventional 
quantum materials, polar molecules exhibit strong, dipolar inter-
actions21–23. However, these interactions are neither isotropic nor 
obviously frustrated, leading to many proposals that ‘engineer’ frus-
trated phases via the use of multiple molecular states, microwave 
dressing fields and spatially varying optical potentials24–29.

Furthermore, although long-ranged, the dipolar couplings 
are not easily fine-tuned; rather, scale invariance dictates that the 
simplest effective Hamiltonian one could hope for is a ‘dipolar 
Heisenberg antiferromagnet’:
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Two fundamental questions arise: is H naturally realized, and what 
is its ground state?

Here, we answer both of these questions. First, we consider 
synthetic quantum magnets constructed from an array of lattice-
trapped, polar molecules interacting via dipole–dipole interac-
tions. We demonstrate that this system easily realizes the dipolar 
Heisenberg antiferromagnet, requiring only a judicious choice of 
two, undressed molecular rotational states (to represent a pseudo-
spin) and a constant electric field27. The simplicity of our proposal 
stems from using rotational states with no angular momentum 
about the electric field axis. This contrasts with previous works 
where non-zero matrix elements appear for the transverse elec-
tric dipole operator, unavoidably generating ferromagnetic spin–
spin interactions because of the inherent anisotropy of the dipolar  
interaction28,29.

Second, motivated by this physical construction, we perform a 
large-scale density matrix renormalization group (DMRG)30,31 study 
of the dipolar Heisenberg model and find evidence for quantum 
spin liquid ground states on both triangular and kagome lattices 
(Fig. 1). As a result of the long-range interactions and the need for 
time-reversal breaking complex wavefunctions, our model is signif-
icantly more challenging to simulate numerically than earlier near-
est-neighbour models. Thus, using the infinite, translation invariant 
version of the algorithm, iDMRG, provides an important speed-up. 
The farther-neighbour dipolar couplings play a crucial role, leading 
to a different phase of matter for both lattice geometries when com-
pared with their nearest-neighbour counterparts realized in Mott 
insulating materials. This contrasts with the case of three-dimen-
sional classical spin ice32. We compute the phase diagram of the 
dipolar Heisenberg model as a function of experimental parameters 
(the electric field strength and tilt) for ultracold polar molecules.

Realization. We consider a two-dimensional array of polar mole-
cules trapped in an optical lattice. The lattice freezes the translational 
motion, leaving each molecule to behave as a simple dipolar rigid 
rotor25–29. The Hamiltonian governing these molecular rotations is 

= + ⋅H BJ E dm
2 , where B is the rotational constant, J is the angu-

lar momentum operator, E is the external electric field and d is the 
dipole operator. For |E|= 0, each molecule has eigenstates indexed 
by |J, M〉 , where M is the z component of angular momentum. An 
applied electric field, = ̂EzE , weakly aligns the molecules along the 
field direction, mixing states with identical M. Each |J, M〉  evolves 
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adiabatically with E, picking up a dipole moment and splitting the 
degeneracy within each J manifold at order (dE)2/B (inset Fig. 2).

The molecules interact with one another via the electric dipole–
dipole interaction, = ∑ ⋅ − ⋅ ⋅≠
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, where 
g =  1/(4π ε0) and Rij is the displacement between molecules i and j. 
Referring to Fig. 2, we select the doublet ↓ = 0, 0  and ↑ = 1, 0 ,  
which are energetically resolved from all other rotational states, to  
play the role of a ‘spin’27. We let Sμ denote the usual spin operators 
in this subspace, but note, that unlike S =  1/2 moments, this doublet 
a priori lacks SO(3) symmetry. To derive the effective Hamiltonian, 
we project Hdd onto the two-level subspace and drop Sz non-conserv-
ing terms as they are strongly off-resonant. This projection is physi-
cally justified by the separation of energy scales between the dipolar 
interaction and the rotational level-splittings: ∕ ≪ ∕gd R B dE B, ( )2 3 2 .

When the electric field is aligned perpendicular to the lattice 
plane (Θ0= 0, inset Fig. 2), we find27
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where =d d1, 0 0, 0z00  is the transition dipole moment, and 
=d d0, 0 0, 0z0  and μ = d1, 0 1, 0z0  are the electric-field-induced 

‘permanent’ dipole moments. The sign of the couplings shows that 
the interaction is antiferromagnetic along all spin axes.

As depicted in Fig. 2, the ratio Δ μ= − ∕d d( ) 20 0
2

00
2 , between the 

Ising and XY interactions (equation (2)) is controlled by the mag-
nitude of the applied electric field. SO(3) symmetry emerges for 

≈ .dE B1 7 , at which point the effective Hamiltonian is precisely the 
dipolar Heisenberg model. We note that Heff is in stark contrast to 

the typical spin models analysed for polar molecules. In particular, 
previous works have generally considered rotational states that lead 
to ferromagnetic interactions favouring easy-plane (XY) magne-
tism; frustrated phases arise only on fine-tuning via microwave and 
optical dressing25–29.

Ground state of the dipolar Heisenberg antiferromagnet. While 
long-range interactions generate frustration on any lattice, geom-
etries with triangular motifs enhance this frustration as it is impos-
sible for all neighbouring spins to anti-align. Here, we consider 
kagome and triangular lattices, both of which have been realized in 
optical lattices33–35.

The ground state of the dipolar Heisenberg antiferromagnet is 
unknown for either lattice. Even for short-range interactions, the 
phase diagram in these geometries has been an open question 
for more than two decades, due to delicate energetic competition 
between many competing phases. Recently, progress has been made 
using DMRG36–44. As DMRG is a one-dimensional (1D) method, 
it requires mapping the 2D lattice to a quasi-1D geometry; here, 
we focus on infinitely long cylinders of circumference L, by using 
the iDMRG algorithm31. The dipolar interaction introduces an 
additional difficulty, as its range must be truncated for a consis-
tent definition on the cylinder. Thus, our numerics require a triple 
extrapolation in L, the interaction range, and the accuracy of the 
iDMRG, which is controlled by the ‘bond dimension’ m. Larger 
m simulations are more accurate, with a computational cost that  
scales as m3.

Detecting and characterizing a quantum spin liquid phase fol-
lows a decision tree. By definition, ‘liquid’ refers to the absence 
of spontaneous symmetry-breaking, specifically of spin rotations 
and translation invariance. Any liquid phase with half-integer 
spin in the unit cell must be exotic: the Hastings–Oshikawa–
Lieb–Schultz–Mattis theorem requires that the phase be either 
a gapless spin liquid or a gapped spin liquid with fractionalized 
excitations45,46. In the gapless case, the ground state has a diverg-
ing correlation length as the circumference of the cylinder is 
increased. In the gapped case, the ground state will have expo-
nentially decaying correlations, protected ground-state degen-
eracy and certain characteristic signatures in its entanglement 
spectrum47,48.

There exists a zoo of gapped spin liquids distinguished by the 
braiding and statistics of their fractional excitations. The two sim-
plest cases are the time-reversal symmetric ℤ2 spin liquid and the 
time-reversal breaking chiral spin liquid (CSL)2,49; the spontane-
ous breaking of time-reversal is detected by using a chiral order 
parameter χ = ⋅ × ∕S S S 3i j k , where i, j and k are the three sites 
of a triangle.
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Fig. 1 | Phase diagram of the dipolar heisenberg model. a,b, Phases on 
the kagome lattice (YC8 geometry truncated at J8) (a) and the triangular 
lattice (YC6 geometry truncated at J5) (b) as a function of the XXZ 
anisotropy Δ (which is controlled by the magnitude of the applied electric 
field (see Fig. 2)) and the polar tilt, Θ0, of the applied electric field (the 
azimuthal angle is given by the green arrow). Near Θ0 =  0, where the 
model is fully frustrated, we observe quantum spin liquid ground states 
on both geometries. Ordered phases for Θ0 >  0 are shown inset with their 
corresponding magnetization density Si
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Fig. 2 | XXZ anisotropy as a function of electric field. The XXZ anisotropy 
Δ is controlled by the electric field strength, E, measured relative to the 
rotational splitting divided by the dipole moment, B/d. Top left inset: the 
rotational states used as the two-level pseudo-spin. Bottom right inset: 
molecules reside in the XY plane and the electric field is oriented along ̂z.
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Let us now turn to the numerics. We refer to the cylinder geom-
etries using the following notation36: YC2n is a cylinder of cir-
cumference 2n lattice spacings periodized along a Bravais vector  
(Fig. 3b,c). We emphasize that, when using the iDMRG algorithm, 
all cylinders are infinitely long. For both lattices, we define Jn to 
be the coupling between nth nearest-neighbour sites, ordered by 
their distance in real space, Rn. We will begin by characterizing the 
ground state of each lattice at the dipolar Heisenberg point and 
will subsequently map out the full phase diagram of the molecular 
proposal.

Kagome model. Extensive theoretical and numerical studies of the 
J1–J2–J3 kagome model reveal a rich phase diagram, consisting of 
a honeycomb valence bond solid, a time-reversal symmetric spin 
liquid, a chiral spin liquid and a multitude of ordered Néel sta
tes13,36–42,50–58. In contrast to these previous studies, the long-range 
dipolar couplings cannot be tuned. For the kagome lattice, it is 
necessary to distinguish be tween two couplings of length R3 =  2 
lattice sites: J3 (across hexagons) and ′J3 (along bow ties) (Fig. 3b). 
Motivated by exchange interactions in Mott insulating materi-
als, previous numerics have always considered =′J 03 . In the dipo-
lar Heisenberg model, all couplings at a given distance are equally 
important and we find a finite ′J3 in fact stabilizes the CSL phase 
(see Supplementary Information for details). This is highlighted by 

the fact that keeping only the J2 or J3 part of the dipolar interaction 
results in the magnetically ordered q =  (0, 0) phase39–42; only upon 
restoring the dipolar tail of the interaction does the system transi-
tion into the CSL.

Let us now turn to the diagnostics of liquidity. We study cylin-
ders of circumference L= 8, 10 and 12 with dipolar cutoffs ranging 
from J3 to J11. In addition to the YC2n geometry, we also consider 
the so-called ‘YC2n-2’ geometry in which cylinders are rolled 
up with a ‘twist’ that identifies sites that differ by Bravais vector 

+na a1 2 (see the YC10-2 hashes in Fig. 3b). This convenient choice 
of boundary condition reduces the computational cost by decreas-
ing the effective iDMRG unit cell by n, enabling better conver-
gence for certain diagnostics. Crucially, neither the spin liquids 
nor the q =  (0, 0) phase is frustrated by this boundary condition; 
more generally, for liquid phases, the resulting physics should be 
unaffected once the cylinder circumference is larger than the cor-
relation length.

An advantage of the infinite-cylinder geometry is that discrete 
symmetries, such as translation or an Ising symmetry, can be spon-
taneously broken. Thus, if the phase spontaneously breaks a discrete 
symmetry in the 2D limit, we expect it will do so on a sufficiently 
large cylinder as well (as we observe in other parts of the phase dia-
gram discussed below and in the Supplementary Information). To 
check that translational symmetry is preserved (that is, to rule out 
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valence-bond order), we verify that the bond correlations are trans-
lation invariant (Fig. 3b) and also calculate the overlap of the ground 
state, Ψ , with a translated version ofitself, Ψ Ψ ε= −�T (1 )

y V.  
This overlap scales with the volume of the system, V, with error  
ε <  0.004. The above are quoted for a YC10 geometry with cou-
plings up to J8, but similar results are found when truncating to J3 
or extending to J11, as well as on the smaller YC8 geometry and the 
larger YC12-2 geometry (see the Supplementary Information for 
details, and for comparison with a known valence-bond solid state).

While discrete symmetries can be spontaneously broken, 
Néel order that breaks a continuous symmetry is ruled out by 
the Mermin–Wagner theorem in our quasi-1D geometry, and we 
indeed find →μS 0i  as the iDMRG accuracy m is increased. In 
our diagnostics, a tendency toward Néel order will instead appear 
as algebraic correlations beyond the dipolar cutoff, or a correlation 
length that diverges with cylinder circumference. To ensure that this 
is not the case, we employ two additional quantitative and qualita-
tive tests, namely, by checking for the absence of algebraic order-
ing at fixed circumference and the absence of increasing long-range 
order as the cylinder circumference increases. Indeed, we find an 
extremely short correlation length ξ ≲  0.9a (as calculated from the 
iDMRG transfer matrix) that does not significantly increase with 
the iDMRG accuracy or cylinder circumference (see Supplementary 
Information for details), consistent with a gapped paramagnet. 
Moreover, the absence of long-range correlations (Fig. 3) indicates 
that spin rotation symmetry is also preserved. By stark contrast, 
when the interaction is truncated to J1, J2, we observe clear long-
range order, and the resulting correlations are qualitatively distinct, 
as shown in the Supplementary Information.

A key requirement for the CSL phase is the spontaneous break-
ing of time-reversal symmetry. To this end, the chiral order param-
eter χ  is shown in Fig. 3a as a function of the size of the cylinder, 
the cutoff of the dipolar interaction and the iDMRG accuracy; χ  
increases weakly with cylinder circumference, converges with the 
DMRG accuracy m and saturates for large dipolar cutoff.

In addition to spontaneous time-reversal breaking, the most 
spectacular signature of a CSL is a chiral edge state. Quantum 
entanglement provides a way to probe these edge states given only 
the ground state. The reduced density matrix ρL for half of the cyl-
inder can be viewed as a thermal density matrix of a semi-infinite 
cylinder, introducing a single ‘edge’. The spectrum = −p e E

a
a of ρL 

(that is, the ‘entanglement spectrum’) is known to mimic the energy 
spectrum Ea of the physical edge47,59,60. On YC2n, the entanglement 
cut runs parallel to the Bravais vector na1 used to compactify the 
cylinder (scissors in Fig. 3c), so that ρL preserves the rotational 
symmetry of the cylinder, allowing us to assign a corresponding 
momentum ∈ πk m

na
2  to each level. Plotting Ea versus the momenta 

ka should reveal a chiral dispersion relation. As shown in Fig. 4a,b, 
there is a low-lying set of levels dispersing rightward, roughly as  
Ea ∼  vka. Focusing on the levels with Sz =  0, the number of levels at 
each momenta k follows the level counting ⋯{1, 1, 2, 3, 5 }; these are 
the partitions of integers expected when occupying a set of bosonic 
edge modes >†b k, 0k . Each level is in fact an SO(3) multiplet, con-
sistent with the SU(2)1 Wess–ℤumino–Witten edge theory55,61. 
Furthermore, we find a second degenerate ground state (analo-
gous to the expected two-fold topological degeneracy of a CSL on a 
torus), whose entanglement spectrum is consistent with the semion 
sector of the CSL55. Note that a right-moving spectrum spontane-
ously breaks time-reversal; when the iDMRG is initialized differ-
ently, right- and left-moving spectra appear with equal probability.

Triangular model. We now turn to the triangular lattice. Truncating 
the dipolar Heisenberg model at short range leads to Néel order: for 
J1 only, a 120° Néel phase62, and for J1, J2, a two-sublattice collinear 
Néel phase43,44. However, adding in the dipolar J3 coupling directly 
penalizes the order of the collinear state and appears to drive the 

system into a liquid; this is evidenced by a drastic change in the 
⋅S Si j  correlation function as the long-range tail of the interac-

tion is restored (see Supplementary Information). With couplings 
through J5, the YC8 ground state has an XY correlation length of  
ξ ≲  1.4a and is translationally symmetric with ε <  4 ×  10−5. Similar 
results are found when truncating to J3 or extending to J8, as well as 
on the smaller YC6 geometry and the larger YC10 geometry.

The phenomenology of the observed spin liquid phase is equiva-
lent to the J1–J2 spin liquid reported previously43,44,56,63. The lowest 
energy state is time-reversal symmetric and has an entanglement 
spectrum consistent with the fermionic spinon topological sector 
of a ℤ2 or U(1) spin liquid54,56; it exhibits a four-fold degeneracy and 
a half-integral representation of SO(3) as shown in Fig. 448. While 
the bond correlations are translation invariant (Fig. 3c), they exhibit 
a noticeable striping consistent with nematic ordering (note that 
this nematicity may be an artefact of the cylindrical geometry that 
breaks C6 symmetry)43. The nature of this triangular spin liquid is 
not yet fully understood.

Phase diagram. The above results (for both triangular and 
kagome) were presented for the SO(3) symmetric Heisenberg 
antiferromagnet (Δ= 1) at ≈ .dE B1 7 . For both stronger (Δ= 1.6) 
and weaker (Δ= 0.6) electric fields, the SO(3) model is broken 
down to a U(1) XXℤ model, but our numerics find that the spin 
liquid phases are completely consistent with those observed at the 
SO(3) point42. Note that the Hastings–Oshikawa–Lieb–Schultz–
Mattis theorem requires only U(1) invariance about the z axis and 
zero net magnetization.

As one tilts the electric field into the lattice plane, the spin liquids 
we observe begin to compete with magnetically ordered phases. The 
tilt generates angular dependence in the effective Hamiltonian,

∑ Φ Φ Θ
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where Φ and Φ0 are the polar angles of R ij and the electric field 
orientation, respectively (inset of Fig. 2). For non-zero Θ0, full frus-
tration is lost as dipoles begin to point head-to-tail along the field 
direction, thereby exhibiting ferromagnetic interactions. For large 
Θ0, a variety of ordered phases appear as shown in Fig. 1a,b (for 
more details, see Supplementary Information). Here, we restrict our 
interest to the phase boundaries of the spin liquid states.

In Fig. 3d,e, we present two representative vertical cuts: out of 
the kagome CSL at Δ= 1.0, and out of the triangular spin liquid at  
Δ= 1.6. In the kagome case, we identify the transition out of the 
CSL via the vanishing of the chiral order parameter (Fig. 3d). In 
the triangular case, we diagnose the phase transition by examining  
the correlation length and the variance of the Sz magnetization (Fig. 3e).  
This reveals two phases, an XY magnet directly proximate to the 
spin liquid and the expected striped Néel phase for larger Θ0. In 
addition to showing that the spin liquid phases persist to moderate 
electric field tilts, understanding the nature of the ordered phases 
surrounding the spin liquids may enable the adiabatic preparation 
of these topological states64; such preparation may benefit from uti-
lizing molecules with larger dipole moments (since our approach 
is generic to all bi-alkali polar molecules), enabling preparation on 
faster timescales. An alternative route for preparation—natural in 
the context of optical lattices—is to utilize a bilayer geometry where 
one layer plays the role of an entropy/energy sink and ‘cools’ the 
adjacent layer (see Supplementary Information for more details). 
This specific approach is particularly simple in systems with long-
range interactions such as polar molecules, whereby decreasing the 
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density of particles in the sink layer naturally enables it to behave 
as a coolant65. However, even before ground-state cooling, one 
must first prepare the system in the zero-magnetization manifold 
of the molecular pseudo-spin states; a particularly simple approach 
is to perform a uniform π /2 pulse starting from the ↓ = 0, 0  
state. While elegant, this approach exhibits intrinsic N  magneti-
zation fluctuations, which should be unimportant for sufficiently 
large numbers of molecules (a number of alternative initialization 
techniques that do not exhibit magnetization fluctuations are also 
detailed in the Supplementary Information).

We note that realizing a gapped spin liquid such as the kagome 
CSL affords some flexibility in the required lattice filling fraction66. 
In particular, the chiral spin liquid will tolerate some amount of lat-
tice dilution: each vacancy will be ‘screened’ by a spinon, preserving 
the spin gap. Only at some critical dilution will the spin liquid order 
be destroyed. A rough estimate of this critical dilution is when the 
inter-vacancy distance is comparable to the correlation length ξ ∼  1  
lattice site, suggesting that our observed CSL phase may remain 
robust to ∼ 10% dilution.

Once prepared, there are a number of approaches to detecting the 
CSL based on either spontaneous or stimulated Bragg scattering67.  
In addition to revealing the spin excitation gap, the fractionaliza-
tion of a single ‘spin’ flip into a pair of spinon excitations would be 
captured by the shape of the spectral line. In particular, rather than 
observing a sharp magnon mode, one expects to observe a broad 
spectrum, reflecting the two-spinon continuum. Moreover, the 
onset of the spin-excitation spectrum near the gap also shows sig-
natures of quasiparticle self-braiding, exhibiting a functional power 
law whose exponent captures the semionic statistics of the chiral 
spin liquid phase68.

In summary, our proposal provides a new route toward study-
ing frustrated quantum magnetism in an ultracold lattice gas. The 
dipolar Heisenberg antiferromagnet exhibits promising signs of 
spin liquid behaviour on both the kagome and triangular lattices, 
distinct from models of nearest-neighbour exchange. In addition to 
lattice trapped molecules, long-range Heisenberg antiferromagnets 
may also be found in designer magnetic lattices69,70 as well as dipolar 
quantum materials14–16. Looking forward, it is important to consider 
the effects of lattice vacancies and dipolar relaxation as well as to 
identify unique signals of frustration in quench dynamics. It would 
also be of interest to consider higher-spin models, which may host 
non-Abelian phases71.

Data availability. The data that support the plots within this paper 
and other findings of this study are available from the correspond-
ing author upon request.
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