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Statistical mechanics underlies our understanding of macroscopic quantum systems. It is based on the
assumption that out-of-equilibrium systems rapidly approach their equilibrium states, forgetting any
information about their microscopic initial conditions. This fundamental paradigm is challenged by
disordered systems, in which a slowdown or even absence of thermalization is expected. We report the
observation of critical thermalization in a three dimensional ensemble of ∼106 electronic spins coupled via
dipolar interactions. By controlling the spin states of nitrogen vacancy color centers in diamond, we
observe slow, subexponential relaxation dynamics and identify a regime of power-law decay with disorder-
dependent exponents; this behavior is modified at late times owing to many-body interactions. These
observations are quantitatively explained by a resonance counting theory that incorporates the effects of
both disorder and interactions.
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Nearly six decades ago, Anderson predicted that the
interplay between long-range couplings and disorder in
quantum systems can lead to a novel regime of slow,
subdiffusive thermalization [1]. This is in stark contrast to
both conventional ergodic systems and disordered systems
with short-range hopping, where disorder can arrest
dynamics, resulting in the breakdown of ergodicity.
Termed Anderson localization, the latter effect has been
observed in systems ranging from acoustic and optical
waves to cold atomic gases [2–4]; more recently, it has been
shown that localization can persist even in strongly
interacting, isolated quantum systems, a phenomenon
dubbed many-body localization [5–7]. In addition to
raising fundamental questions, such systems have also
become a basis for the exploration of novel nonequilibrium
phases of matter, including Floquet symmetry protected
topological phases [8] and discrete time crystals [9,10].
The addition of long-range couplings tends to facilitate

delocalization, leading to a regime where ergodicity and
localization compete [11,12]. This so-called critical regime
is realized by dipolar spins in three dimensions, where a
combination of power-law interactions, dimensionality, and
disorder govern the microscopic dynamics [1,13,14]. Such
systems have long been explored in the context of nuclear
magnetic resonance spectroscopy, where a wide variety of

techniques have been developed to effectively engineer and
control spin dynamics [15–19]. Despite this, the direct
observation of slow, critical dynamics in the presence of
strong, controllable disorder remains an outstanding chal-
lenge, owing to difficulties in preparing a low-entropy spin
state, such as a polarized initial state.
In this Letter, we report the observation of critical

dynamics using disordered, strongly interacting electronic
spin impurities associated with nitrogen-vacancy (NV)
centers in diamond. More specifically, we study the
thermalization of an initially polarized spin ensemble
coupled to a bath of unpolarized spins [Fig. 1(a)] and
quantitatively explain its dynamics using a resonance
counting theory. Each NV center constitutes an S ¼ 1 spin
system with three internal states jms ¼ �1i and jms ¼ 0i,
which can be initialized, manipulated, and optically read
out under ambient conditions [Figs. 1(b)–1(c)]. In our
experiments, we utilize a dense ensemble of NV centers,
where the average NV-to-NV separation of 5 nm leads to
strong dipolar interaction strength J ∼ ð2πÞ420 kHz, a
significantly faster timescale than typical spin coherence
times [20,22]. The diamond sample was fabricated from a
high-pressure high-temperature type-Ib natural abundance
(13C 1.1%) diamond with an initial nitrogen concentration
of 100 ppm. Using high fluence electron irradiation and
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in situ annealing, an NV center concentration of 45 ppm
was achieved [20]. Electron spin resonance (ESR) mea-
surements reveal that our sample is also characterized
by a strong on-site potential disorder W ≈ ð2πÞ4.0 MHz
[Fig. 1(d)] caused by an abundance of paramagnetic
impurities as well as strain in the diamond lattice [20].
NV centers are oriented along four different crystallo-

graphic axes of the diamond lattice. Different projections of
an external magnetic field naturally lead to distinct energy
splittings and define four unique NV groups, fA;B;C;Dg,
which can be individually addressed and controlled in a
finite B field via resonant microwave radiation. By tuning
the direction of the magnetic field, one can modify the
number of spectrally overlapping groups and hence
the effective density of spins [Fig. 1(d)]. To directly probe
the interaction strength within our system, we perform a
double electron-electron resonance (DEER) measurement
between two spectrally separated NV groups, A and B
[Fig. 2(a), bottom inset]. In this measurement the spin echo
protocol decouples group A from slowly varying magnetic
noise. However, the additional π pulse on group B after half
of the total evolution ensures that the dephasing induced by
interactions between the two groups is not decoupled. As
depicted in Fig. 2(a), this measurement allows us to extract
the interaction strength ∼ð2πÞ420 kHz [20]. By tuning
additional NV groups into spectral resonance, we can
confirm that the spin dynamics are dominated by inter-
actions. As a function of the number of resonant groups, ν,

we find a total dephasing rate, γT ¼ γb þ νγ0, with γb ≈ 0.9
and γ0 ≈ 0.4 MHz, consistent with 45 ppm NV center
density [Fig. 2(a) inset] [20]. The linear dependence of γT
on ν suggests that the dephasing is dominated by coherent
interactions, whose strength is proportional to the density
of resonant NV groups. The extracted γb ≈ 0.9 MHz, a bare
decoherence rate, could originate partly from the inter-
actions with single nitrogen defects (P1 centers).
Central to our thermalization experiments is the ability to

tune both the disorder strength and interactions. This is
achieved by using spin-locking and Hartmann-Hahn (HH)
resonances, both of which rely upon continuous micro-
wave driving resonant with the jms ¼ 0i → jms ¼ −1i
transitions of the respective NV groups [24,25]. For
excitation with Rabi frequency Ω, this defines a
“dressed-state” basis, j�i ≈ ðjms ¼ 0i � jms ¼ −1iÞ= ffiffiffi

2
p

[Fig. 2(b)]. In the rotating frame, the energies of these two
states are split by the effective on-site potential

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ δ2i

p
,

where δi is the local disorder potential for spin i (of order
W). In the limit of strong driving Ω ≫ δi, we obtain an
effective disorder potential δ̃i with the reduced width
Weff ∼W2=Ω, allowing us to tune the disorder by simply
adjusting the Rabi frequency. For spin locking, we initially
polarize NVs in the dressed-state basis. After an evolution
time τ the polarization can be converted back to the bare
basis, yielding a dramatic enhancement of the lifetime
compared to a spin-echo measurement [Fig. 2(c)]. We find
that the lifetime is limited by interactions with short-lived
spins in our system, which are suppressed by increasing Ω
[23]. Thus, spin locking enables us to prepare a single

(a) (d)

(b) (c)

FIG. 1. Experimental system. (a) Schematic depicting two
groups of spin ensembles interacting via long-range dipolar
interactions. An initially polarized system (red arrows) coupled
to a bath of unpolarized spins (blue arrows) will eventually
thermalize to an unpolarized spin state. (b) The crystallographic
structure of diamond contains four possible NV quantization
axes. (c) Simplified NV level scheme showing the spin degrees of
freedom in the optical ground state. A large zero-field splitting
Δ0 ¼ ð2πÞ2.87 GHz in combination with a magnetic field
induced Zeeman shift γBk leads to individual addressability of
the spin sublevels. (d) The lower image shows a simulated ESR
scan, revealing the spin transitions of all four NV groups
fA; B; C;Dg. The upper figure shows an ESR scan of a single
transition of NV spins (blue points). Blue solid line represents a
Gaussian fit with standard deviation W, corresponding to the
average disorder in the sample.

(a) (b)

(c)

FIG. 2. Interacting spin ensemble. (a) Spin echo on NV group A
(blue points) and DEER scan on groups A and B (red points). The
bottom left inset illustrates the DEER pulse sequence. Solid lines
indicate exponential fits to the data. The inset shows the spin echo
coherence time as a function of resonant NV groups (blue points).
The blue solid line represents a linear fit to the data. (b) Schematic
depicting the NV level scheme during a spin-lock sequence.
(c) Spin-lock coherence decay for low (light-blue points) and
high (dark blue points) cw driving strength, showing significant
extension beyond the spin echo decoherence (gray-blue points).
The decay curves are fitted to a stretched exponential function
exp ½− ffiffiffiffiffiffiffi

t=T
p � [23].
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group of polarized NVs with tunable disorder and long
lifetime.
To control interactions, we utilize a HH resonance

permitting cross-polarization transfer between two spin
ensembles [24,25]. To this end we align the 160 Gmagnetic
field along the ½1; 2̄; 3̄� direction, which allows groups A
and B to be spectrally distinguished, and at the same time,
to be isolated from the groups C andD by a detuning larger
than all relevant Rabi frequencies. Within this setting, we
prepare two oppositely polarized spin ensembles in the
dressed-state basis with energy splittings ΩA and ΩB
[Fig. 3(a)]. Figure 3(b) depicts the results of a spin-lock
measurement on group A as a function of ΩB, revealing a
sharp resonance with a linewidth significantly narrower
than the on-site disorder strength W. The linewidth of this
resonance can be monitored as a function of the common

Rabi frequency Ω ¼ ΩA ¼ ΩB, showing a strong decrease
for higher Ω caused by a reduction of the effective disorder
Weff [Fig. 3(b) inset].
This method allows us to probe the thermalization

dynamics with controlled interaction and tunable disorder.
To this end, we investigate the dynamics of an initially
polarized spin subensemble (group A) in HH resonance with
another, unpolarized subensemble (group B). Physically, this
situation corresponds to the thermalization of a polarized
spin ensemble in contact with a spin bath held at infinite
effective temperature. To extract the coherent thermalization
dynamics, we normalize the polarization decay with a
sufficiently detuned HH measurement [20], wherein we
observe a decay profile that fits neither a diffusive power law
(∼t3=2) nor a simple exponential [Fig. 3(c)]. By varying the
driving strengthΩ, we find that the polarization decays faster
for larger Ω, consistent with a smaller effective disorder
[Fig. 3(d)]. Interestingly, the functional profiles of the decays
are consistent with power laws for over a decade, followed
by accelerated relaxation at late times.
To understand these observations, we turn to a theoretical

description of our system. Spin dynamics are governed by
the interplay between disorder and long-range dipolar
interactions. Working in the dressed-state basis, we find
that the form of this interaction depends on whether spins
reside in the same or in distinct groups. For spins in
different groups (A and B), dipolar interactions naturally
lead to spin exchange. However, for spins in the same
group, the S ¼ 1 nature of the NV centers and energy
conservation in the rotating frame lead to an absence of spin
exchange [20]; rather, the coupling between spins takes the
form of an Ising interaction. Thus, when initially polarized,
a spin may depolarize only through exchange with spins of
the other group. Specifically, in the limit of strong disorder,
one expects the dynamics to be dominated by rare resonant
exchange processes between the two groups. To describe
such dynamics, we consider a simplified model, where a
single group A excitation is located at the center of an
ensemble of group B spins [Fig. 4(a)]. The dynamics of this
excitation are captured by an effective Hamiltonian,

Heff ¼
X
i

δ̃iσ
x
i −

X
ij

Jij
r3ij

ðσþi σ−j þ H:c:Þ; ð1Þ

where rij is the distance between spins, Jij is the orientation
dependent coefficient of the dipolar interaction with typical
strength J0 ¼ ð2πÞ52 MHznm3, σ⃗ are spin-1=2 operators
with σ�i ¼ σyi � iσzi , and δ̃i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ δ2i

p
− Ω is the effec-

tive quenched disorder potential. While this single-particle
model neglects the many-body nature of our experiments
such as intragroup Ising interactions and complex dynam-
ics of group B excitations, it captures the key features of
slow relaxation in critical systems; however, these addi-
tional features will be necessary to accurately describe the
long time thermalization behavior as discussed later.

(a) (d)

(b)

(c)

FIG. 3. Spin cross relaxation. (a) Schematic depicting two
oppositely polarized groups of spins (A and B) in the dressed-
state basis. Under spin locking with a common Rabi frequencyΩ,
the effective disorder reduces from the natural disorder W with
increasing Ω, thereby enhancing the rate of resonant spin
exchange. (b) Population of group A as a function of driving
strength of group B, showing the HH resonance (dark blue
points). Light blue data show spin-lock coherence without driving
of other groups. The corresponding solid curves represent a
Lorentzian and constant fit to the data. Inset shows the HH
resonance linewidth as a function of applied Rabi frequency.
(c) Polarization dynamics of group A interacting with an
oppositely polarized (red) and unpolarized (blue) spin bath,
group B, at the HH condition with Ω ¼ ð2πÞ9 MHz as a function
of evolution time. The polarized spin bath leads to faster
polarization decay [20]. Dashed lines represent an exponential
decay, showing significant deviation at long times. (d) Polariza-
tion decay of group A under HH conditions with unpolarized
group B for different driving strengths. Dashed red lines are
power-law fits to the data in the time window up to the vertical
line. Curved solid lines are the fits to our theory model including
time-dependent disorder. All error bars correspond to 1σ.
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To characterize the spin decay dynamics governed by
Heff , we calculate the survival probability PðtÞ of the
excitation via a simple resonance counting analysis. For a
given disorder realization, this resonance counting proceeds
as follows. Two spins at sites i and j are on resonance at time
t if (i) their energy mismatch is smaller than their dipolar
interaction strength, jδ̃i − δ̃jj < βJ0=r3ij (β is a dimension-
less constant of order unity), and (ii) the interaction occurs
within the timescale t, Jij=r3ij > 1=t. PðtÞ is approximately
given by the probability of having found no resonances up to
time t or, equivalently, up to distance RðtÞ≡ ðJ0tÞ1=3 [20].
This probability can be computed as the product of prob-
abilities of having no resonant spins at any r,

PðtÞ ¼
YRðtÞ
r

�
1 − 4πnr2dr

βJ0=r3

Weff

�
∝ tð−4πnβJ0=3WeffÞ: ð2Þ

PðtÞ exhibits power-law decay with a disorder dependent
exponent η ¼ 4πnβJ0=ð3WeffÞ, where n is the density of
spins that are oppositely polarized to the central excitation.
This subexponential relaxation is the essence of the
slow critical dynamics predicted by Anderson [1]. Such

single-particle power-law relaxation is also consistent with
results obtained from random-banded matrix theory [14,26]
and is numerically verified for up to N ¼ 104 spins [20].
A detailed comparison of our experimental observations

with these theoretical predictions is summarized in Fig. 4.
In order to quantify the slow dynamics, we take subsets of
our depolarization time trace over half-decade windows, fit
the data to power laws, and extract the resulting exponents.
Varying the starting time of the windows, we find that the
extracted exponents remain constant up to a long time
T� ≫ 1=J, beyond which they increase, indicating the
deviation of the thermalization dynamics from a simple
single-particle prediction [Fig. 4(b)]. Interestingly, the
exponents scale linearly with the inverse effective disorder,
as predicted by the counting argument [Fig. 4(c)].
Furthermore, we find that their values are in excellent
agreement with our theory based on numerical simulations
of a single-particle Hamiltonian [20].
At late times (t > T�), the observed decay accelerates and

deviates significantly from the power law.This is natural since
the effects of multiparticle interactions cannot be neglected
when a significant fraction of spins have already undergone
depolarization. In particular, intragroup Ising interactions
among randomly positioned spins δIi ≡

P
jJij=r

3
ijhσxji may

behave as an additional disorder that changes in time with
characteristic strength J=4 ∼ ð2πÞ105 kHz. Additionally,
weak coupling to the environment may also give rise to
corrections to our single particle model.
To understand this behavior, we extend our theory

analysis by allowing the on-site disorder to vary slowly
in time. More specifically, we assume that the disorder
potential consists of both static and dynamical parts with
standard deviationsWs andWd, and that the dynamical part
changes over a correlation time τd. Repeating our previous
analysis incorporating the effect of dynamical disorder, we
obtain a modified survival probability P̃ðtÞ ∝ e−t=T

�
t−η

with T� ≡ 3Wsτd=ð4πnβJ0Þ [20]. The rate 1=T� thus
characterizes the deviation from the power-law regime,
and can be intuitively understood as the rate at which a pair
of initially off-resonant spins comes into resonance as the
local potentials vary in time. Figure 3(d) shows that P̃ðtÞ
provides an excellent fit to our observation over all time-
scales. Both extracted parameters Wd ∼ ð2πÞ0.5 MHz and
τd ∼ 40 μs are comparable to the strength of Ising inter-
actions and independently measured NV depolarization
time, respectively [20,23]. This suggests that the dynamical
disorder is dominated by intrinsic contributions from Ising
interactions, which is related to the predicted thermalization
enhancement due to multi-particle resonances and higher
order processes [11,12]. Moreover, the extracted power-law
duration agrees well with the predicted linear dependence
of T� on effective disorder strengths [Fig. 4(d)]. Together,
these observations strongly corroborate our theoretical
model describing the microscopic mechanism of thermal-
ization dynamics in a critical system.

(a)

(c) (d)

(b)

FIG. 4. Understanding thermalization dynamics. (a) Schematic
of single particle resonance counting argument predicting a power-
law decay profile. (b) Variation of power-law exponents extracted
from a subset of data, consisting of seven subsequent points, swept
from the beginning to the end of thermalization time traces. Black
and gray data correspond to the case of Ω ¼ ð2πÞ4 and 9 MHz,
respectively. Dotted lines correspond to phenomenological fits,
identifying the duration over which the power-law exponents
remain constant. (c) Power-law decay exponents of group A
polarization as a function of effective disorder Weff. Dashed line
corresponds to a theoretical prediction based on the single particle
resonance counting. (d) Duration of power-law dynamics ex-
tracted for various strengths of effective disorderWeff. Dashed line
corresponds to a theoretical prediction based on a refined reso-
nance counting including time-dependent disorder. All error bars
correspond to 1σ.
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We have demonstrated that dense ensembles of NV
centers constitute a powerful platform for exploring quantum
dynamics of strongly correlated many-body systems.
Complementary to recent studies of localization in cold
atomic systems [6,7], these spin systems exhibit slow,
disorder-dependent relaxation associated with critical ther-
malization dynamics. The quantitative agreement between
the observed spin relaxation and resonance counting theory
demonstrates that the dynamics are dominated by rare
resonances. Moreover, the observed deviations from sin-
gle-particle theory reveal the subtle role that many-body
effects can play in such systems. These studies can be
extended along several directions. A higher degree of spatial
quantum control can be obtained via spin-based subwave-
length imaging techniques [27]. Advanced dynamical decou-
pling can enable the engineering of a broader class of
interaction Hamiltonians and the direct measurement of
quantum entanglement dynamics [28,29]. The use of strong
magnetic field gradients or the fabrication of diamond
nanostructures can allow for the exploration of spin dynamics
in lower dimensional systems [30], where the existence of
many-body localization is still in debate [11,13]. In combi-
nation, these directions may enable the study of dynamical
phase transitions from localization to thermalization [6,31,32]
as well as exotic nonequilibrium phases of matter [8–10].

We thank A. Gali, D. Budker, B. J. Shields, A. Sipahigil,
M. Knap, S. Gopalakrishnan, and J. Chalker for insightful
discussions and N. P. De Leon for fabricating the diamond
nanobeam. This work was supported in part by CUA,
NSSEFF, ARO MURI, Moore Foundation, Miller Institute
for Basic Research in Science, Kwanjeong Educational
Foundation, Samsung Fellowship, NSF PHY-1506284,
NSF DMR-1308435, Japan Society for the Promotion of
Science KAKENHI (No. 26246001), EU (FP7, Horizons
2020, ERC), DFG, SNF, Volkswagenstiftung, and BMBF.

G. K., S. C., and J. C., contributed equally to this work.

*To whom correspondence should be addressed.
lukin@physics.harvard.edu.

[1] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[2] T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature

(London) 446, 52 (2007).
[3] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P.

Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A.
Aspect, Nature (London) 453, 891 (2008).

[4] G. Roati, C. DErrico, L. Fallani, M. Fattori, C. Fort, M.
Zaccanti, G. Modugno, M. Modugno, and M. Inguscio,
Nature (London) 453, 895 (2008).

[5] R. Nandkishore and D. A. Huse, Annu. Rev. Condens.
Matter Phys. 6, 15 (2015).

[6] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen,
M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and I.
Bloch, Science 349, 842 (2015).

[7] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P.
Hauke, M. Heyl, D. A. Huse, and C. Monroe, Nat. Phys. 12,
907 (2016).

[8] A. C. Potter, T. Morimoto, and A. Vishwanath, Phys. Rev. X
6, 041001 (2016).

[9] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee,
J. Smith, G. Pagano, I. D. Potirniche, A. C. Potter, A.
Vishwanath, N. Y. Yao, and C. Monroe, Nature (London)
543, 217 (2017).

[10] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F.
Jelezko, S. Onoda, H. Sumiya, V. Khemani et al., Nature
(London) 543, 221 (2017).

[11] A. L. Burin, arXiv:cond-mat/0611387.
[12] N. Y. Yao, C. R. Laumann, S. Gopalakrishnan, M. Knap,

M. Müller, E. A. Demler, and M. D. Lukin, Phys. Rev. Lett.
113, 243002 (2014).

[13] L. S. Levitov, Phys. Rev. Lett. 64, 547 (1990).
[14] V. E. Kravtsov, O. M. Yevtushenko, P. Snajberk, and E.

Cuevas, Phys. Rev. E 86, 021136 (2012).
[15] C. P. Slichter, Principles of Magnetic Resonance (Springer

Science & Business Media, New York, 2013), Vol. 1.
[16] A. J. Vega, J. Magn. Reson. 65, 252 (1985).
[17] P. Robyr, B. Meier, and R. Ernst, Chem. Phys. Lett. 162, 417

(1989).
[18] X. Wu and S. Zhang, Chem. Phys. Lett. 156, 79 (1989).
[19] S. Zhang, B. H. Meier, and R. R. Ernst, Phys. Rev. Lett. 69,

2149 (1992).
[20] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.121.023601 for details
about sample characterization, experimental techniques, data
analysis, and theoretical models, which includes Ref. [21].

[21] E. Van Oort and M. Glasbeek, Chem. Phys. Lett. 168, 529
(1990).

[22] G. Balasubramanian, P. Neumann, D. Twitchen, M.
Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard,
J. Beck, J. Tissler et al., Nat. Mater. 8, 383 (2009).

[23] J. Choi, S. Choi, G. Kucsko, P. C. Maurer, B. J. Shields, H.
Sumiya, S. Onoda, J. Isoya, E. Demler, F. Jelezko, N. Y. Yao,
and M. D. Lukin, Phys. Rev. Lett. 118, 093601 (2017).

[24] S. Hartmann and E. Hahn, Phys. Rev. 128, 2042 (1962).
[25] C. Belthangady, N. Bar-Gill, L. M. Pham, K. Arai, D. Le

Sage, P. Cappellaro, and R. L. Walsworth, Phys. Rev. Lett.
110, 157601 (2013).

[26] A. D. Mirlin, Y. V. Fyodorov, F.-M. Dittes, J. Quezada, and
T. H. Seligman, Phys. Rev. E 54, 3221 (1996).

[27] P. Maurer, J. Maze, P. Stanwix, L. Jiang, A. V. Gorshkov,
A. A. Zibrov, B. Harke, J. Hodges, A. S. Zibrov, A. Yacoby
et al., Nat. Phys. 6, 912 (2010).

[28] P. Hauke, M. Heyl, L. Tagliacozzo, and P. Zoller, Nat. Phys.
12, 778 (2016).

[29] S. Choi, N. Y. Yao, and M. D. Lukin, Phys. Rev. Lett. 119,
183603 (2017).

[30] M. J. Burek, N. P. de Leon, B. J. Shields, B. J. Hausmann, Y.
Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M.
Loncar, Nano Lett. 12, 6084 (2012).

[31] T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M.
Kuhnert, W. Rohringer, I. E. Mazets, T. Gasenzer, and J.
Schmiedmayer, Science 348, 207 (2015).

[32] E. Kaminishi, T. Mori, T. N. Ikeda, and M. Ueda, Nat. Phys.
11, 1050 (2015).

PHYSICAL REVIEW LETTERS 121, 023601 (2018)

023601-5


