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We propose and analyze a protocol to study quantum information scrambling using statistical correlations
between measurements, which are performed after evolving a quantum system from randomized initial states.
We prove that the resulting correlations precisely capture the so-called out-of-time-ordered correlators
and can be used to probe chaos in strongly interacting, many-body systems. Our protocol requires neither
reversing time evolution nor auxiliary degrees of freedom, and it can be realized in state-of-the-art quantum
simulation experiments.
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I. INTRODUCTION

Recent developments in quantum simulation have
enabled the remarkable ability to interrogate and control
atomic, molecular, and ionic degrees of freedom (d.o.f.) in
lattice experiments with single-site resolution [1–4]. In
atomic Hubbard models with bosonic and fermionic atoms
in optical lattices, a quantum gas microscope provides us
with single-shot spatial- and spin-resolved images of
atomic densities. By averaging over many images, this
allows one to extract spatial and spin equal-time correlation
functions, which reveal unique properties of (non)equilib-
rium quantum phases [5–8]. In spin models, as realized
with trapped ions [9,10], Rydberg atoms [11–14], and
superconducting qubits [15–18], the state of the spins
(qubits) can be measured in a given standard basis in
single-shot measurements with high fidelity and with high
repetition rates. Building on these tools, we develop below
quantum protocols to measure many-body observables
from analyzing statistical cross-correlations between such
quantum images representing different runs of an experi-
ment. We see that this provides us with simple, generic, and
robust techniques to extract many-body observables, which
are challenging to access otherwise within existing exper-
imental setups. In particular, we develop novel protocols
for out-of-time-ordered correlators (OTOCs), which are

time-dependent quantities that cannot be measured directly
as a standard time-ordered correlation function. OTOCs
represent a key quantity to diagnose quantum chaos and
enable one to understand how quantum information prop-
agates, and “scrambles” [19], in close connection to the
notion of entanglement spreading [20–23].
OTOCs have been introduced to characterize quantum

dynamics, described by a unitary time-evolution operator
UðtÞ in terms of the complexity of Heisenberg operators
WðtÞ ¼ U†ðtÞWUðtÞ. For chaotic dynamics, even an ini-
tially “simple” and local Hermitian operator W rapidly
becomes complex and nonlocal. As a consequence, after a
short time, WðtÞ is delocalized and no longer commutes
with an initially nonoverlapping local operator V. The
degree of noncommutativity, or equivalently the scrambling
of WðtÞ, is quantified by the OTOC, which takes the form

OðtÞ ¼ TrðρWðtÞV†WðtÞVÞ=TrðρWðtÞ2V†VÞ; ð1Þ

with ρ the initial quantum state. Note that this definition
ensures that OðtÞ ¼ 1 when WðtÞ and V commute. In the
following, we focus on the “infinite-temperature” OTOC
[22–26] for which ρ ¼ I=NH, with I the identity operator
andNH the Hilbert space dimension. In Sec. V, we discuss
extensions of our approach to thermal states. The time
dependence of OðtÞ can distinguish between different
classes of scrambling, ranging from “fast scrambling”
in models with holographic duals [27–32] and chaotic
many-body spin systems [19,22,23,33,34], to “slow scram-
bling” characteristic of many-body localization (MBL)
[24–26,35]. These theoretical insights raise the question
of how to experimentally measure OðtÞ, despite the
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peculiar time order inherent in its definition. A first option
to measure OðtÞ consists in implementing time-reversal
operations [21,36–39] or using auxiliary quantum systems
[40]. The first measurements of OTOCs were realized using
this approach in systems with few d.o.f. [41], but also in a
trapped ion setup with infinite-range interactions [42].
However, protocols based on realizing time-reversal
operations remain an experimental challenge for many
experimental platforms—like Hubbard systems or systems
with local interactions. For such protocols, recent studies
have also shown that decoherence can “mimick” the effect
of scrambling, and they have developed [39,43] and
realized [44] implementations involving auxiliary d.o.f.
to distinguish the two effects.
In contrast, a unique feature of our protocols to measure

OTOCs via statistical correlations is that they do not rely
on time-reversal operations nor the presence of an ancillary
system. In addition, we show that OTOCs extracted from
statistical averages provide the key advantage to be
naturally robust against various forms of decoherence
and experimental noise, including depolarization and read-
out errors. As a consequence, our protocols can be realized
in any state-of-the-art AMO [2,3,45] or superconducting
qubit platforms [4], and they can be used as experimental
probes of scrambling in many-body systems.
Our work presents two key results related to two

protocols. First, we introduce the global protocol and
demonstrate the exact equivalence between the OTOC
OðtÞ, as defined above, and the statistical correlations

obtained from initial states, which are randomized with a
global unitary operator u for the total many-body system.
We then present the local protocol, which consists of an
experimentally simpler approach for spin systems, where
the initial state is randomized with local unitary operations
and where the statistical correlations also give access
to OðtÞ.
This paper is organized as follows. Section II presents

the main results of this paper by describing the two
protocols to measure OðtÞ with local and random unitaries.
Section III gives different physical examples, accessible to
current AMO and solid-state platforms. Finally, we discuss
in Sec. IV the role of statistical errors and imperfections,
and we identify, in particular, the different situations
(depolarization, readout errors) where the protocol is not
affected.

II. PROTOCOLS MAPPING STATISTICAL
CORRELATIONS TO OTOCs

In this section, we present and illustrate both the global
and local protocols to measure OTOCs via random mea-
surements. We consider a system S associated with a
Hilbert space of dimension NH. This system can be, for
example, a set of atoms described by a Hubbard model
or an ensemble of spin-1=2 as shown in Fig. 1(a). In the
following, we also assume the operator V to be unitary and
the operator W to be Hermitian and traceless [TrðWÞ ¼ 0].
Note that these conditions do not restrict the ability of

(a) (c)

(d)(b)

Global protocol Local protocol

FIG. 1. Probing scrambling via statistical correlations in a spin system. (a) The global protocol consists in separately measuring
hWðtÞiu;k0 and hV†WðtÞViu;k0 to obtain the OTOC OðtÞ. (b) Numerical simulations of the protocol for the kicked Ising model with
parameters hx ¼ J, hz ¼ 0.809J, JT ¼ 1.6, N ¼ 8, and j ¼ 3. The first two panels show the statistics of the measurement at Jt ¼ 0
and Jt ¼ 35.2. In the third panel, the exact OTOC OðtÞ is shown as a solid line, and the points represent the statistical correlations
obtained from Nu ¼ 500 unitaries and NM ¼ 500 projective measurements (per unitary), with error bars placed at �2σ calculated
from the jackknife resampling method. (c) Local protocol using local random unitaries. (d) Same as (b) with the local protocol,
extracting the modified OTOC OnðtÞ (calculated exactly, colored lines) from the statistical correlations (circles with error bars).
Convergence to the OTOC OðtÞ (black line) is achieved for low index n ∼ 2. Throughout this work, we use unbiased estimators for
the normalization terms DðG;LÞ.
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OTOCs to describe scrambling: For spin systems, we
consider, as examples,W and V to be local Pauli operators,
which are particularly relevant in this context [22,23].
We also give examples below that are relevant to probe
scrambling in Hubbard systems.
Our two protocols are illustrated in Fig. 1. The first

protocol described in Sec. II A relies on global random
unitaries u from the circular unitary ensemble CUEðNHÞ
[46] or from a unitary 2-design [47]. As illustrated below
for a Bose-Hubbard (BH) system, such random unitaries
can be realized in generic interacting models using time-
dependent disorder [48–50]. The second protocol presented
in Sec. II B considers spin systems with individual spin
control, which allows us to drastically simplify the exper-
imental task by replacing the global random unitaries by
local random unitaries u ¼ u1 ⊗ u2 ⊗ … ⊗ uN , ui ∈
CUEð2Þ, acting on single spins i ¼ 1;…; N. Note that
such local random unitaries have recently been realized
with high fidelity with trapped ions [10,51].
We find it convenient to present both protocols as

experimental recipes to measure the statistical correlations.
In each case, we then mathematically relate the correlations
to OðtÞ.

A. Global protocol

Experimental protocol.—The protocol consists of the
following steps, as illustrated in Fig. 1(a).

(i) We prepare an arbitrary state jk0i and apply a global
random unitary u to obtain jψu;k0i ¼ ujk0i. The
randomized state jψu;k0i is the starting point for two
independent experiments:

(ii.a) In the first experiment, we evolve the system in
time with UðtÞ and perform a measurement of the
expectation value of W. The time-evolution oper-
ator UðtÞ can be generated, for instance, from a
static Hamiltonian UðtÞ ¼ e−iHt, from Floquet
evolution, or from a quantum circuit operating
on qubits, depending on the type of system
under study. We repeat steps (i) and (ii.a) with
the same random unitary u to measure hWðtÞiu;k0 ¼
hψu;k0 jWðtÞjψu;k0i, as illustrated in Fig. 1(a).

(ii.b) In the second experiment, we prepare again jψu;k0i
and apply the unitary V. This operation is followed
by the time evolution with UðtÞ and a measure-
ment of W. We repeat this sequence to obtain
hV†WðtÞViu;k0 ¼ hψu;k0 jV†WðtÞVjψu;k0i, as shown
in Fig. 1(a).

(iii) Finally, we repeat steps (i) and (ii) for different
random unitaries. The OTOC OðtÞ, as defined
in Eq. (1), is then obtained from the statistical
correlations

OðtÞ ¼ 1

DðGÞ hWðtÞiu;k0hV†WðtÞViu;k0 ð2Þ

between the measurement outcomes hWðtÞiu;k0 and
hV†WðtÞViu;k0 of (ii.a) and (ii.b), respectively.
Here, � � � denotes the ensemble average over

random unitaries u, and DðGÞ ¼ hWðtÞi2u;k0 is a
normalization term.

Proof and illustration.—Equation (2) can be proven
using the 2-design identities, which provide analytical
expressions for the statistical correlations between the
matrix elements of u [52],

um1;n1u
�
m0

1
;n0

1
um2;n2u

�
m0

2
;n0

2

¼ δm1;m0
1
δm2;m0

2
δn1;n01δn2;n02 þ δm1;m0

2
δm2;m0

1
δn1;n02δn2;n1 0

N 2
H − 1

−
δm1;m0

1
δm2;m0

2
δn1;n02δn2;n01 þ δm1;m0

2
δm2;m0

1
δn1;n1 0δn2;n2 0

NHðN 2
H − 1Þ ;

ð3Þ

with δ the Kronecker delta. In order to simplify the proofs,
in this work we use a diagrammatic representation of
Eq. (3), where the contractions of the different indices
are represented by lines [53], as shown in Fig. 2(a). This
representation allows us to prove in Fig. 2(b) the identity

hWðtÞiuhV†WðtÞViu ¼ c
X

τ¼I;swap

Tr½τðWðtÞ ⊗ V†WðtÞVÞ�

¼ cTr½WðtÞV†WðtÞV�; ð4Þ

(a)

(b)

FIG. 2. Identities for our protocol with global unitaries.
(a) Diagrammatic representation of the 2-design identities of
the CUE Eq. (3). (b) Correlations between two measurements
with A ¼ WðtÞ, B ¼ V†WðtÞV. Here, we have introduced the
notation for the initial pure density matrix ρ0 ¼ jk0ihk0j.
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with c ¼ ½NHðNH þ 1Þ�−1. The trace in the first line is
performed over an extended Hilbert space H ⊗ H,
where H is the Hilbert space of dimension NH, and the
swap operator is swapðjki ⊗ jk0iÞ ¼ jk0i ⊗ jki for each
pair of states jki, jk0i. The condition of traceless operator
Tr½WðtÞ� ¼ 0 and the identity Tr½swapðWðtÞ ⊗
V†WðtÞVÞ� ¼ Tr½WðtÞV†WðtÞV� yield the second line of
Eq. (4). Finally, to conclude our proof, we use the same
identity with V → I to prove that the denominator in Eq. (2)
reduces to cTr½W2ðtÞ�.
As an illustration, we present in Fig. 1(b) the intuitive

physical picture behind this result [based on realizing UðtÞ
for the kicked Ising model; see caption and text below]. At
t ¼ 0, the measurement of Wð0Þ ¼ W ¼ σzj (j > 1) is not
affected by the operator V ¼ σz1, which distinguishes the
two initial states jψu;k0i and Vjψu;k0i. Indeed, ½V;Wð0Þ�¼0

and hence hWð0Þiu;k0 ¼ hV†Wð0ÞViu;k0 , implying perfect
correlations, i.e., Oð0Þ ¼ 1 [up to shot noise errors; see
below and Fig. 1(b), left panel]. At later times (middle
panel), when ½V;WðtÞ� ≠ 0 due to the spreading of WðtÞ,
the value of hV†WðtÞViu;k0 becomes decorrelated from
hWðtÞiu;k0 . Note that in analogy to our approach, the
distance between a quantum state and a (physical) copy,
which is perturbed at t ¼ 0 by the operator V, has been
proposed to numerically detect scrambling [54,55].
Measurement budget and statistical errors.—In an

experiment, a finite number of Nu random unitaries is
realized to measure OðtÞ based on Eq. (2). Furthermore,
the operatorW is measured via a finite number of projective
measurements NM per unitary. The total number of mea-
surements leading to an estimation of the OTOC is therefore
Nmeas ¼ NuNM. The finite value of Nmeas will lead to
statistical errors. To illustrate this aspect, we compare in
Fig. 1(b) the time evolution of OðtÞ with the estimation
obtained from a finite realistic number of measurements [10]
(circles with statistical error bars). We analyze the role of
statistical errors in more detail in Sec. IV.
Implementation of random unitaries.—One of the exper-

imental challenges in the protocol presented above consists
in generating, with high fidelity, global random unitaries u
satisfying the 2-design properties. In quantum simulators
implementing Hubbard or spin models, this can be done
using random quenches based on time-dependent disorder
potentials (see Refs. [49,50] and the example in Sec. III A).
We now proceed to describe an experimentally significantly
simpler protocol for spin systems, which only requires us to
generate local random unitaries acting on individual spins.
These unitaries can be realized by combining local rota-
tions along a fixed axis of the Bloch sphere, say, the z axis,
with global rotations along an orthogonal direction, for
instance, the x axis [10,51]; they can therefore be imple-
mented in present qubit experiments with single-site con-
trol, e.g., with trapped ions [2], Rydberg atoms [3], or
superconducting qubits [4].

B. Local protocol

The protocol.—We now describe our protocol based on
local unitaries. The main difference compared to the
protocol presented in Sec. II A is that we need to consider
an ensemble En ¼ fjk0i;…g of initial states, instead of a
single one jk0i, in order to obtain a mapping between

statistical correlations and OTOCs. The states jksi ¼
jkð1Þs ; kð2Þs ;…i that we consider are written as product states
in a standard fixed basis, i.e., kðiÞs ¼ ↑;↓, and can be easily
prepared in an experiment with single-site control.
The protocol consists of the following steps:
(i) We prepare the first initial state jk0i, (s ¼ 0), and

apply the local unitary u ¼ u1 ⊗ …uN, cf. Fig. 1(c),
to prepare jψu;k0i. Here, each local unitary ui is
drawn independently from a unitary 2-design, such
as the circular unitary ensemble CUE(2).
(ii.a) In the first experiment, we measure W after

evolving the system in time with UðtÞ.
Repeating steps (i) and (ii.a) with the same
random unitary u gives us access to
hWðtÞiu;k0 ¼ hψu;k0 jWðtÞjψu;k0i.

(ii.b) In the second experiment, we proceed as in
(ii.a), but we apply V before the time evo-
lution withUðtÞ. This method gives us access
to hV†WðtÞViu;k0 .

(iii) We repeat steps (i) and (ii.a) for the other initial
states jksi ∈ En, using the same random unitary u, in
order to obtain hWðtÞiu;ks , for each ks ∈ En.

(iv) Finally, we repeat steps (i)–(iii) for different random
unitaries. From these measurements, we can con-
struct the statistical correlations

OnðtÞ ¼
1

DðLÞ
n

X
ks∈En

ckshWðtÞiu;kshV†WðtÞViu;k0 ; ð5Þ

withDðLÞ
n ¼P

ks∈En
ckshWðtÞiu;kshWðtÞiu;k0 , andweightscks .

Measurement budget and convergence aspects.—
For this protocol, the number of measurements is
Nmeas ¼ NuNMðjEnj þ 1Þ, with jEnj the cardinal of En,
i.e., the number of initial states ks. In the following, we
show how to choose the ensembles En and weights cks so
that the correlations OnðtÞ represent a converging series,
indexed by n, of “modified OTOCs” approximating OðtÞ.
The low-order OTOCs O0;1;…ðtÞ, which correspond to
small numbers of initial states (jEnj ¼ 1; 2;…) to sample
and are thus the easiest quantities to access experimentally,
provide generically good approximations of OðtÞ. We also
prove, in the other limit n ¼ N, the exact relation
ONðtÞ ¼ OðtÞ.
Introducing the modified OTOCs.—Here, for concrete-

ness, we consider V to be a Pauli operator on the first site
i ¼ 1. For each value of n ¼ 0;…; N, we then define the
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ensemble En as the set of all 2n configurations jksi, such
that only the states of the first n spins can differ from the

ones of the reference state jk0i, i.e., kði>nÞs ¼ kðiÞ0 for i > n.
For instance, for n ¼ 0 (n ¼ 1, respectively), which we
study in detail below, the ensemble E0 ¼ fjk0ig
(E1 ¼ fjk0i; σx1jk0ig) is represented by a single state (just
two states). As proven in the Appendix A, by choosing the
weights cks ¼ ð−1=2Þd½k0;ks�, with d½k0; ks� the Hamming
distance (the number of spin flips between jk0i and jksi),
we can relate the statistical correlations OnðtÞ to modified
OTOCs,

OnðtÞ ¼
P

A;Bn⊆ATrAðWðtÞAðVWðtÞVÞAÞP
A;Bn⊆ATrAðWðtÞAWðtÞAÞ

; ð6Þ

which converge to OðtÞ for n ¼ N [56]. Here, the sums in
the numerator are performed over all partitions A, which
include the set Bn ¼ f1;…; ng of the first n spins (for
n ¼ 0, B0 ¼ ∅ is empty), and the traces are performed
over reduced operators WAðtÞ ¼ TrS−A½WðtÞ� and
ðVWðtÞVÞA ¼ TrS−AðVWðtÞVÞ. The modified OTOCs
OnðtÞ are thus sums of out-of-time-ordered functions of
the different reduced operators WðtÞA, ðVWðtÞVÞA.
Properties of the modified OTOCs and illustrations.—

The identity Eq. (6) shows that the index n plays the role of
a spatial resolution controlling how OnðtÞ approximates
OðtÞ. For all contributing partitions A, f1…ng ⊆ A, the
information about the first n spins is preserved when
reducing the operators WðtÞ → WðtÞA VWðtÞV →
ðVWðtÞVÞA. In particular, for the maximal spatial resolu-
tion n ¼ N, statistical correlations are exactly the OTOC
ONðtÞ ¼ OðtÞ. In the opposite case of n ¼ 0, all partitions
A ⊆ S of the system contribute to O0ðtÞ. For O1ðtÞ, the
information related to the support of V (here, the first site)
is “resolved” so that we can expect a better approximation
to OðtÞ, and so on for n ¼ 2; 3;…. Note that our con-
struction of the sets En can be generalized easily to other
positions of V and also to multisite operators.
An illustration of this protocol is shown in Fig. 1(d)

[compare to Fig. 1(b)], where we show OnðtÞ (solid lines)
and the corresponding statistical correlations obtained
by simulating the protocol numerically. For n ¼ 0, the
modified OTOC captures the scrambling time as OðtÞ
but saturates to a nonzero value at long times. For
n ¼ 1; 2; 3;…, the values of OnðtÞ are in good quantitative
agreement with OðtÞ. We also note that for short times, the
local protocol has an advantage compared to the global
protocol in terms of statistical errors, as we explain below.

III. REALIZATIONS OF THE PROTOCOLS IN
DIFFERENT PHYSICAL SCENARIOS

This section is devoted to physical examples that can be
accessed with our protocol. In Sec. III A, we show how to
apply the global protocol in an atomic Bose-Hubbard

system. We then focus on the local protocol and analyze,
for chaotic (Sec. III B), many-body localized (Sec. III C),
and long-range spin models (Sec. III D), the behavior of
modified OTOCs OnðtÞ. We analyze, in particular, both via
analytical models and numerical simulations, the conver-
gence properties of OnðtÞ to OðtÞ.

A. Implementation of the global protocol
in a Bose-Hubbard chain

We now present an example to illustrate the different
steps of the protocol with global unitaries and consider the
situation of scrambling dynamics of the BH chain [21],
with UðtÞ ¼ expð−iHBHtÞ,

HBH ¼ −J
XN−1

i¼1

ða†iþ1ai þ H:c:Þ þ Uint

2

XN
i¼1

niðni − 1Þ;

ð7Þ
with ai bosonic operators and ni ¼ a†i ai. We consider here
the OTOC dynamics for the unitary V ¼ expð−iπa†1a1Þ and
the traceless observable W ¼ njþ1 − nj.
We first illustrate the mapping Eq. (2) in Fig. 3 by

comparing OðtÞ [panel (a)] and the corresponding statis-
tical correlations [panel (b)], where Nu ¼ 1000 random
unitaries were sampled numerically from the CUE.
Assuming here no projection noise NM → ∞, we obtain
a very good agreement between the two quantities. Note,
as in the case of the spin models described below, the

(a) (b)

(c) (d)

FIG. 3. Scrambling in the BH chain. (a) OTOCOðtÞ for different
positions j ¼ 2;…; N − 1 (green to purple) of the operatorW (see
text). (b) OðtÞ estimated with Nu ¼ 1000 unitaries u sampled
numerically from the Haar measure. (c,d) Comparison between
OðtÞ and corresponding estimations via statistical correlations,
where u is prepared via η random quenches, with j ¼ 7 (c)
and j ¼ 4 (d), and Nu ¼ 1000. Here, ΔðmÞ

j is sampled from a
uniform distribution of width 2J, and the quench time is T ¼ 1=J.
For all panels, we consider N ¼ 8 lattice sites with jk0i ¼
j10101010i in the number basis, and Uint ¼ 2J. In panels
(b)–(d), error bars at 2 standard deviations are calculated using
the jackknife resampling method. Here, we consider NM → ∞.
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characteristic “scrambling time” for the OTOCs varies
essentially linearly with the position of the operators,
showing the existence of a “butterfly” velocity.
We now discuss the physical realization of the global

random unitaries u. Unitaries satisfying the required
2-design properties can be generated using the same
Hamiltonian HBH subject to a sequence of η random
quenches [49,50],

u ¼
Yη
m¼1

exp
�
−iT

�
HBH þ

X
j

ΔðmÞ
j nj

��
; ð8Þ

withΔðmÞ
j a random disorder potential, which is reinitialized

for each quench m, and the quench time T. As shown in
Refs. [49,50], such random quenches efficiently generate, in
each particle number sector, unitaries satisfying the required
2-design properties of the CUE, after a time ηT ≈ N. This
case is illustrated in Figs. 3(c) and 3(d) for two different
operatorW positions: For η ≥ N, the generated u converges
to the CUE (with respect to the required 2-design proper-
ties), and therefore, the measured statistical correlations
coincide within the statistical error bars with OðtÞ.

B. Chaotic dynamics with modified OTOCs

In the rest of this section, we focus on spin models with
OTOCs measured by local unitaries. To illustrate the ability
of the modified OTOCs OnðtÞ, Eq. (6), to approximate
OðtÞ, we first consider scrambling in chaotic spin models,
which is characterized by two key features: The support of
an operator WðtÞ that is initially localized grows ballis-
tically with a “butterfly velocity” vB, and the operator front
traveling at vB broadens diffusively [19,22,23]. The bal-
listic growth can be captured by a simple phenomenologi-
cal model, which assumes that UðtÞ takes the form
UðtÞ ¼ U½LðtÞ�1 ⊗ … ⊗ U½LðtÞ�N=LðtÞ, where the Haar

random unitaries U½LðtÞ� ∈ CUEð2LðtÞÞ describe scram-
bling on a linearly growing scale LðtÞ ¼ 1þ floorðvBtÞ.
For W ¼ σzj and V ¼ σz1, we obtain, in leading order in
LðtÞ ≫ 1 [33],

OðtÞ ¼ 1 ½j > LðtÞ� OðtÞ ¼ −
1

4LðtÞ
½j ≤ LðtÞ�; ð9Þ

and, as shown in Appendix B,

O0ðtÞ¼1½j>LðtÞ� O0ðtÞ¼
1

3
½j≤LðtÞ�;

O1ðtÞ¼1½j>LðtÞ� O1ðtÞ¼−
1

2LðtÞþ1
½j≤LðtÞ�; ð10Þ

Here, OðtÞ represents the average OTOC over the unitaries
U, whereas the expression for OnðtÞ corresponds to includ-
ing the sampling over U in the ensemble average � � � [57].
All OTOCs OðtÞ ¼ O0;1ðtÞ ¼ 1 thus coincide at short times
when WðtÞ and V commute exactly. At the scrambling time

tB ¼ r=vB (r ¼ j − 1), OðtÞ and O0;1ðtÞ exhibit a sharp
drop. For t > tB, OðtÞ and O1ðtÞ are exponentially sup-
pressed, while O0ðtÞ converges to 1=3.
We now confront these analytical predictions with

numerical simulations of the kicked Ising model, which
is an example of a chaotic spin model [22],

UðmTÞ ¼
h
e−iðT=2Þð

P
i
Jσzi σ

z
iþ1

þ
P

i
hzσ

z
i Þe−iðT=2Þhx

P
i
σxi
i
m
;

ð11Þ

with m a positive integer and T the period of the Floquet
system. Throughout this work, we use open boundary
conditions (OBC). The results are shown in Fig. 4, where
we compare the modified OTOCs for n ¼ 0, 1, 2, 3, 4 with
OðtÞ. In panel (a), corresponding to an operator position
j ¼ 4, the scrambling dynamics described byOðtÞ is fast in
the sense that it occurs at a time tB ∼ j=J. This behavior is
qualitatively captured by the first modified OTOC, with
fast decay at the scrambling time and saturation at the
predicted value 1=3 of our phenomenological model.
Interestingly, the convergence of OnðtÞ to OðtÞ is achieved
for small values, n≳ 1. In panel (b), we represent the
same quantities for a distant operator j ¼ 7. In this case, the
dynamics of the OTOC includes a long-time slow behavior,
which we attribute to the diffusive character of the operator
WðtÞ [22,23]. This additional complexity of the operators

(a) (b)

(c) (d)

FIG. 4. OnðtÞ vs OðtÞ for chaotic dynamics in the kicked Ising
model. All plots represent for N ¼ 8 sites the modified OTOCs
OnðtÞ, for n ¼ 0, 1, 2, 3, 4 and the OTOC OðtÞ. The dashed line
shows the predicted value 1=3 for O0ðtÞ for Haar scrambling.
(a) For hx ¼ 0.75J, and j ¼ 3, the OTOC decay is fast and well
captured by the low-order OTOCs OnðtÞ. (b) For a larger j ¼ 7
operator position, the OTOC decay is slower, as a consequence of
the diffusive broadening of WðtÞ. (c) For j ¼ 7, and hx ¼ J, the
decay of OðtÞ is fast but accompanied by strong oscillations,
which are also resolved by the modified OTOCs. (d) For a fixed
long time Jt ¼ 35.2, the modified OTOCs provide good approx-
imations to OðtÞ, in particular in the regime hx ≥ 0.75J. Other
parameters are hz ¼ 0.809J, and JT ¼ 1.6.
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[compared to ballistic spreading as in panel (a)] is captured
for spatial resolutions n≳ 4. In panel (c), we show another
example of deviation from ballistic scrambling, with strong
oscillations of the OTOCs, which are quantitatively cap-
tured for n ≥ 2; 3. Finally, we show in panel (d) the
different regimes of scrambling as a function of the trans-
verse field hx for a fixed large time Jt ¼ 35.2. All modified
OTOCs identify a region of fast scrambling around hx ∼ J.
Interestingly, the modified OTOCs with n ≥ 1 also provide
an excellent approximation to OðtÞ in a regime of slow
scrambling, hx ≥ 1.25J. Finally, for hx ≤ 0.75J, an
increased resolution is necessary to access OðtÞ. This
example shows that the required resolution n to access
OðtÞ up to a given error depends on the type of evolution
realized by UðtÞ and is generically small. Note that these
results also suggest that the convergence properties of the
series OnðtÞ can be useful to identify different regimes of
scrambling.

C. MBL dynamics with modified OTOCs

As a second example, with the opposite type of scram-
bling, we consider MBL, which is the paradigmatic
example of a closed quantum system that does not thermal-
ize [58,59]. As a key signature, the decay ofOðtÞ is slow: It
occurs at a characteristic time tB that scales exponentially
with the distance r between the support ofW and V at t ¼ 0
[24,26], which has to be contrasted to the linear increasing
tB ∝ r of chaotic systems.
To begin our analysis, we first calculate the modified

OTOC O0;1ðtÞ for the phenomenological l-bit model
[60,61] described by the Hamiltonian

H ¼
X
i

hziσ
z
i þ

X
i<j

JR;ije−jj−ij=ξσziσ
z
j; ð12Þ

with hzi random fields, JR;ij random interaction strengths
that are taken uniformly in ½−Jz; Jz�, and ξ the localization
length. Here, we only consider 2-body interaction terms,
which is sufficient to show that MBL exhibits slow
scrambling [24,26]. With UðtÞ ¼ e−iHt, W ¼ σxj , and
V ¼ σx1, one finds [24]

OðtÞ ¼ sincð4Jze−r=ξtÞ;

O0ðtÞ ¼
1þ 2OðtÞ
2þOðtÞ ; O1ðtÞ ¼ OðtÞ; ð13Þ

with r ¼ j − 1. Thus, for slow MBL scrambling, O0ðtÞ
is related to OðtÞ via a simple transformation, while we
obtain an exact equivalence between the one-site resolved
modified OTOCs O1ðtÞ and OðtÞ. In the noninteracting
case Jz ¼ 0, each l bit evolves independently, OðtÞ ¼
O0;1ðtÞ ¼ 1 ¼ const. With interactions Jz > 0, the decay of
both OðtÞ ¼ O1ðtÞ and O0ðtÞ occurs at tc ¼ er=ξ=Jz. This
analytical result is shown in Fig. 5(a). Note that, similar to

the case of chaotic dynamics, OðtÞ tends to zero at long
times, while O0ðtÞ saturates to a finite value, here 1=2.
These results are confirmed by our numerical simulations
of a disordered XXZ chain [62] shown in Figs. 5(b)
and 5(d). For the noninteracting case Jz ¼ 0, both
OTOC values remain close to 1. In the MBL phase, the
decay of O0;1ðtÞ exhibits the expected exponential scaling
with the distance r, and it converges at long times to the
predicted values of 1=2 and 0, respectively. As predicted by
the l-bit model, the values of OðtÞ and O1ðtÞ are almost
identical.

D. Information scrambling by long-range
interactions with modified OTOCs

So far, we have considered examples where interactions
are local, with analytical models supporting the statement
that low-order n modified OTOCs provide good approx-
imations of OðtÞ. To conclude, we numerically study
scrambling in a long-range interacting model. This sit-
uation is particularly interesting as the decay of the OTOCs
is not necessarily controlled by a butterfly velocity asso-
ciated with the presence of a light cone [63,64].
Here, we consider a long-range XY model, realized,

for instance, in trapped ion experiments [2], with time-
evolution operator UðtÞ ¼ expð−iHLRtÞ, and

HLR ¼
X
j>i

J
ðj − iÞα ðσ

þ
i σ

−
j þ H:c:Þ; ð14Þ

(a) (b)

(c) (d)

FIG. 5. MBL dynamics. (a) Values of OðtÞ and O0;1ðtÞ in the
l-bit model. (b)–(d) Numerical simulations for a disordered XXZ
chain showing that the generic scaling of O0ðtÞ matches OðtÞ,
while OðtÞ ≈O1ðtÞ. We use 20 random realizations of the
disorder. Green to purple curves represent increasing values of
j ¼ 2;…; N. The lines (circles) correspond to MBL Jz ¼ J
(Anderson Jz ¼ 0) dynamics, respectively. The x axis is rescaled
using a fitted localization length ξ ¼ 2. Other parameters: N ¼ 8,
Δ ¼ 10J. The dashed lines represent the predictions Oð∞Þ ¼ 0
and O0ð∞Þ ¼ 1=2.
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with α a positive number controlling the range of the
interactions.
We show in Fig. 6 the space-time expansion of OðtÞ and

O3ðtÞ for two different values of α. For α ¼ 1.5, the system
satisfies Lieb-Robinson bounds [63,64], meaning that the
system behaves effectively as if the interactions are local.
This result is manifested by a light-cone spreading of the
OTOCs. Conversely, for α ¼ 0.5, the characteristic decay
time of OðtÞ is superlinear with respect to the operator
position j.
In such a model with long-range interactions, the

convergence of the modified OTOCs is slightly slower
than for the examples shown before with nearest-neighbor
interactions. However, the two types of light cones are well
resolved by the modified OTOC O3ðtÞ. Within the light
cone, O3ðtÞ oscillates weakly with time. These oscillations
fade out with increasing n.

IV. ERRORS AND IMPERFECTIONS

We conclude our manuscript by presenting a study of
errors and imperfections. From this analysis, we can draw
the conclusion that OTOCs can be measured with good
precision in AMO and superconducting qubit experiments
with current technology, and with the total number of
measurements compatible with state-of-the-art repetitions
rates [10].

A. Statistical errors

Statistical errors arise in an experiment from a finite
numberNM of measurements per random unitary u to access
the expectation values hWðtÞiu;k0 and hV†WðtÞViu;k0 , and
from a finite number of random unitariesNu used to estimate
the correlation coefficients. This results in deviations E ¼
j½OðtÞ�e −OðtÞj between estimated and exact correlation
coefficients.

The scaling of statistical errors can be explained best in
terms of the phenomenological model for scrambling
Eqs. (9) and (10). Accordingly, using global unitaries, the
typical value of hWðtÞiu;k0 ∼ 1=

ffiffiffiffiffiffi
2N

p
is suppressed expo-

nentially. The number of projective measurements NM
required to access OðtÞ up to a given error thus scales as
2N . The protocol based on local unitaries accessing
OnðtÞ has a crucial advantage, provided that low reso-
lution n ≪ N is sufficient to approximate OðtÞ. The

typical value of the expectation values hWðtÞiu;ks ∼
1=

ffiffiffiffiffiffiffiffiffi
2LðtÞ

p
scales instead with the effective complexity

2LðtÞ of the operator. Accordingly, the early-time dynam-
ics of large chaotic systems subject to Lieb-Robinson
bounds [22,23], but also the long time evolution of a
MBL system, both of which correspond to small scram-
bling lengths LðtÞ ≪ N, are accessible with a moderate
number of measurements, about 2LðtÞ. These findings are
confirmed by the numerical simulations of Fig. 7, show-
ing the statistical error E for the global protocol [panel
(a)] and the corresponding error E1 for the local protocol
with n ¼ 1 [panel (b)]. Note that for both protocols, when
convergence with respect to NM is reached, the typical
statistical error is 1=

ffiffiffiffiffiffi
Nu

p
(consistent with the central limit

theorem).

(a) (b)

(c) (d)

FIG. 6. Scrambling with long-range interactions. (a,b) OTOC
OðtÞ for N ¼ 8, and two values of α ¼ 1.5, 0.5. (c,d) Same as
panels (a) and (b) for the modified OTOC O3ðtÞ, which also
distinguishes the two regimes of scrambling.

(a) (b)

(c) (d)

FIG. 7. Statistical errors, imperfections, and decoherence. (a,b)
Statistical errors for global and local protocols in the case of the
scrambling model, Eqs. (9) and (10). For NM ≫ 2N (a), resp.
NM ≫ 2L (b), the errors reach a statistical plateau at 1=

ffiffiffiffiffiffi
Nu

p
. For

the simulations of the global protocols, we use the two values
N ¼ 4, 8 (circles, stars). (c) Effects of depolarization on statistical
errors: This decoherence mechanism rescales the values of the
observables, which implies that one should perform a slightly
larger number of measurements to access O1ðtÞ with a given
precision. (d) Decoherence vs scrambling in the kicked Ising
model. Each qubit is subject to spontaneous emission with rate γ.
Parameters are N ¼ 6, j ¼ 4, hx ¼ J, hz ¼ 0.809J, NM ¼ ∞,
Nu ¼ 100. The effect of decoherence is manifested by an increase
of the correlations at long times.
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B. Imperfections and decoherence

Our two protocols have a certain robustness against
various types of experimental imperfections and
decoherence. First, let us consider the effect of imperfect
implementations of the local random unitaries u, which we
can parametrize with a characteristic mismatch angle dθ in
the realization of spin rotations. Our error analysis pre-
sented in Appendix F 1 shows that our estimations of the
OTOCs are only affected in second order in dθ. The
absence of a linear correction in dθ indeed illustrates a
robustness mechanism inherent to protocols based on
random measurements: OTOCs are estimated via an
ensemble average over many random unitaries, which
tends to “average out” the effect of errors from individual
measurements. In particular, we expect the global protocol
to have a similar robustness mechanism with respect to
small errors in the preparation of global unitaries.
The two protocols are also robust against readout errors.

In the case of decoherence, depolarization noise only
rescales the values of the measurements ofW while leaving
statistical correlations unaltered [see Appendix F 2 and
Fig. 7(c)]. For other sources of decoherence, the values of
the correlations can be affected but in a way that can be
clearly distinguished fromunitary scrambling.While scram-
bling generically leads to a decay of statistical correlations,
decoherence increases correlations. This behavior, which is
the opposite of the case of protocols based on the reversal of
time evolution [39,43,44], can be understood by noting that,
for a Markovian dissipative evolution, the distance between
two different states always decreases with time [65]. This
case is illustrated in Fig. 7(d) for the estimation of the
modified OTOC ½O0ðtÞ�e.

V. CONCLUSION AND OUTLOOK

In the present work, we provide novel protocols to
measure OTOCs for spin models, based on statistical
correlations between measurement outcomes obtained from
random initial states from both global and local random
unitaries. These protocols can be implemented in state-of-
the-art quantum simulation experiments on various physi-
cal platforms, in particular, in Rydberg atoms, trapped ions,
or superconducting qubits, which provide high repetition
rates. The paradigm of extracting nonstandard correlation
functions of quantum many-body systems from statistical
correlations points to several interesting future develop-
ments, including extensions to measure modified OTOCs
for Hubbard models [45].
While we have focused on second-order statistical

correlations based on cross-correlating two random mea-
surements, higher-order moments can also be used—at the
price of higher requirements w.r.t. statistical errors—to
access higher-order OTOCs [33] or OTOCs of arbitrary
states ρ. In particular, we show in Appendix G 1 that the
protocol can be adapted to access “symmetrized” OTOCs

of arbitrary states, in particular, of thermal and ground
states. This method could be used to extract the crucial
temperature dependence of the Lyapunov exponents in
models of high-energy physics such as the Sachdev-Ye-
Kitaev models [27–32].
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APPENDIX A: CORRESPONDENCE BETWEEN
STATISTICAL CORRELATIONS AND OTOCs

WITH LOCAL UNITARIES

In this section, we prove the relation between statistical
correlations and OTOCs for the second protocol with local
random unitaries u ¼ u1 ⊗ � � � ⊗ uN , where each ui is
sampled independently from CUEðdÞ, d being the local
Hilbert space dimension (d ¼ 2 for the spin-1=2 we
consider). Here, we extend our diagrammatic approach
by introducing a matrix-product-operator (MPO) [67]
representation for the operatorsWðtÞ and V. This extension
is shown in Fig. 8: Each (blue) physical index is contracted
following the 2-design rule shown in panel (a), while the
(green) bond links remain unchanged. To simplify the
derivation of the proof, we rewrite OnðtÞ as

OnðtÞ≡ hWðtÞiu;nhV†WðtÞViu;k0
hWðtÞiu;nhWðtÞiu;k0

; ðA1Þ

with hWðtÞiu;n ≡P
ks∈En

ð−1=2Þd½ks;k0�hWðtÞiu;ks ¼
Tr½rnWðtÞ�, with the operator rn ¼ r1;n ⊗ … ⊗ r1;N
written as a tensor product with ri;n ¼ jkðiÞ0 ihkðiÞ0 j−
1=2ðσxi jkðiÞ0 ihkðiÞ0 jσxi Þδi≤n. The operator rn gathers all the
information about the initial states jksi ∈ En and the
corresponding chosen weights cks ¼ ð−1=2Þd½k0;ks�.
Finally, we also use the tensor product decomposition

ρ0 ¼ ρ1 ⊗ … ⊗ ρN , with ρi ¼ jkðiÞ0 ihkðiÞ0 j.
We can now prove graphically, in Fig. 8,

hWðtÞiu;nhVWðtÞViu;k0
¼ 1

3N

�
3

4

�
n
�
1

2

�
N−n X

τ∈EðLÞn

TrðτWðtÞ ⊗ VWðtÞVÞ; ðA2Þ
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where the index n is omitted in the graphics. The ensemble

EðLÞ
n consists of all the 2N−n permutations of the form

τ ¼ Q
j≥n swapj

Q
i>n τi, τi ¼ Ii; swapi, with the local

swap operator swapijkii ⊗ jk0ii ¼ jk0ii ⊗ jkii. This case
leads directly to the desired equality

OnðtÞ ¼
P

τ∈EðLÞn
Trfτ½WðtÞ ⊗ V†WðtÞV�gP

τ∈EðLÞn
Trfτ½WðtÞ ⊗ WðtÞ�g

¼
P

A;f1…ng⊆ATrAðWAðtÞ½V†WðtÞV�AÞP
A;f1…ng⊆ATrA½W2

AðtÞ�
: ðA3Þ

In particular, for n ¼ N, we obtain ONðtÞ ¼ OðtÞ.

APPENDIX B: OTOCs FOR HAAR SCRAMBLING

We now prove Eqs. (9) and (10) of the main text. The
case j > LðtÞ is straightforward due to the commutativity
of V and W. For j ≤ LðtÞ, the equality written for the

OTOC OðtÞ follows directly from the 2-design identities
[cf. Fig. 9(a)] and can also be found in Ref. [33].
For the modified OTOCs, we use the mapping to

statistical correlations to calculate the values corresponding
to Haar scrambling. We show in Figs. 9(b) and 9(c) the

evaluation of hWðtÞiu;n¼0;1hV†WðtÞViu;k0 , which can be

adapted to derive hWðtÞiu;nhWðtÞiu;k0 by replacing V by the
identity matrix. Since u is a product of local random
unitaries, we use the decomposition X ¼ X½L�1 ⊗;…,
X½L�1¼⊗i≤L uiXiu

†
i , for X ¼ r, ρ. We also use the

notation ρ0½L�1 ¼ Vρ½L�1V†. This method proves the
desired identities

O0ðtÞ ¼
2L=3 − 1

2L − 1
; O1ðtÞ ¼

−1
2Lþ1 − 1

: ðB1Þ

(a)

(b)

FIG. 8. Identities for our protocol with local unitaries. (a) MPO
representation of multisite indexed operators. (b) Correlations
between two measurements with A ¼ WðtÞ, B ¼ V†WðtÞV.

(a)

(b)

(c)

FIG. 9. Proof of Eq. (9) using a diagrammatic approach. In
panels (a) and (b), the ensemble average is performed over the
unitaries U leading to the contractions of the red indices. In panel
(c), the ensemble average is taken with respect to the unitaries u1
with the contracted indices shown in blue.
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APPENDIX C: OTOCs FOR MANY-BODY
LOCALIZATION

To describe analytically the behavior of OTOCs in the
MBL phase [24,26], we consider the l-bit model with time
evolution UðtÞ ¼ expð−iHtÞ described by the Hamiltonian

H ¼
X
i

hziσ
z
i þ

X
i<j

Ji;jσ
z
iσ

z
j; ðC1Þ

where hzi are random fields that, as we show below, have
no effect on the OTOC; Jij ¼ JR;ij expð−jj − ij=ξÞ, where
JR;ij is a random interaction amplitude with probability
distribution fðJR;ijÞ, which we assume to be uniform in
½−Jz; Jz�, and ξ is the localization length. We study the
behavior of the OTOCs for the operators W ¼ σxj and
V ¼ σx1. In the Anderson case Jz ¼ 0, each l bit evolves
independently, and we have OðtÞ ¼ OnðtÞ ¼ 1.

1. Single disorder realization

We now address the general MBL case Jz > 0 and first
consider a single disorder realization of the interaction
matrix ðJijÞ, writing the Heisenberg operators as

WðtÞ ¼ σxje
−2ithzjσ

z
je−2it

P
i≠j

Jijσ
z
i σ

z
j ;

V†WðtÞV ¼ σxje
−2ithzjσ

z
je−2it

P
i≠j

Jijciσ
z
i σ

z
j ; ðC2Þ

with ci≠1 ¼ 1, c1 ¼ −1. We then obtain

OðtÞ ¼ 1

2N
Tr½expð−4itJ1jσz1σzjÞ� ¼ cosð4J1jtÞ; ðC3Þ

as already shown in Refs. [24,26]. We now evaluate
On¼0;1ðtÞ using the first line given in Eq. (A3). We first
perform the trace operation with respect to the site j,

TrjfðIj þ swapjÞ½WðtÞ ⊗ WðtÞ�g

¼ 2 cos

�
2t
X
i≠j

Jijðσzi − σ̃zi Þ
�
;

Trj½ðIj þ swapjÞðWðtÞ ⊗ V†WðtÞVÞ�

¼ 2 cos

�
2t
X
i≠j

Jijðσzi − ciσ̃
z
i Þ
�
; ðC4Þ

with σ̃βi (β ¼ x, y, z) the set of Pauli matrices in the “copy”
Hilbert space Hi associated with site i. We can then
calculate the trace over the remaining sites, for instance,

Trk

�
ðIk þ swapkÞ cos

�
2t
X
i≠j

Jijðσzi − σ̃zi Þ
��

¼ ½4 cosð2tJkjÞ2 þ 2� cos
�
2t
X
i≠k;j

Jijðσzi − σ̃zi Þ
�
; ðC5Þ

Trk

�
ðIk þ swapkÞ cos

�
2t
X
i≠j

Jijðσzi − ciσ̃
z
i Þ
��

¼ ½4 cosð2tJkjÞ2 þ 2 cosð2ð1 − ckÞJkjtÞ�

× cos

�
2t
X
i≠k;j

Jijðσzi − σ̃zi Þ
�
: ðC6Þ

All the factors that enter in the numerator and in the
denominator in Eq. (A3) are identical, except for the
position k ¼ 1 of the V operator. This case leads to

O0ðtÞ ¼
4 cosð2J1jtÞ2 þ 2 cosð4J1jtÞ

4 cosð2J1jtÞ2 þ 2
¼ 2 cosð4J1jtÞ þ 1

cosð4J1jtÞ þ 2
;

O1ðtÞ ¼ cosð4J1jtÞ: ðC7Þ

2. Averaged OTOCs

Considering a distribution of the random realizations
of Jij, On¼0;1ðtÞ is now obtained from Eq. (A3), where the
numerator and the denominator are replaced by their
ensemble average. Repeating the above derivation, replac-
ing each cosine contribution by the average

cosðαJijtÞ →
Z

Jz

−Jz
dJR;ij cosðαJR;ije−jj−ij=ξtÞ; ðC8Þ

we obtain Eq. (13).

3. Simulations of the disordered XXZ model

To describe the OTOCs in the MBL dynamics [24],
we consider the XXZ model

H ¼
X
i

½Jðσþi σ−iþ1 þ σ−i σ
þ
iþ1Þ þ Jzσ

z
iσ

z
iþ1� þ

X
i

hizσ
z
i ;

ðC9Þ

with hiz sampled from a uniform distribution ½−Δ;Δ�.

APPENDIX D: NUMERICAL SIMULATION
WITH DECOHERENCE

To study the competition between scrambling dynamics
and decoherence, we consider the kicked Ising model. The
dynamics is calculated from the Lindblad master equation
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_ρðtÞ ¼ −i½HðtÞ; ρðtÞ� þ γ
X
i

L½σ−i �½ρðtÞ�;

H

�
t ∈

�
ðn − 1ÞT; nT −

T
2

��
¼ hx

X
i

σxi ;

H

�
t ∈

�
nT −

T
2
; nT

��
¼ J

X
i

σziσ
z
iþ1 þ

X
i

hzσ
z
i ;

L½σ−i �ðρÞ ¼
1

2
½2σ−i ρσþi − ρσþi σ

−
i − σþi σ

−
i ρ�; ðD1Þ

with the initial condition ρð0Þ ¼ ρ0, and γ the spontaneous
emission decay rate (identical for each qubit).

APPENDIX E: NUMERICAL STUDY OF
STATISTICAL ERRORS

Here, we present complementary data to Fig. 7, showing
the scaling of statistical errors in our protocol with global
and local unitaries. The results are shown in Fig. 10. The
data confirm that statistical errors for NM → ∞ decrease as
1=

ffiffiffiffiffiffi
Nu

p
with a growing number of applied random unitaries

Nu, independently of LðtÞ and N [panels (a)–(c)]. Panel
(d) shows the scaling of statistical errors with respect to NM
for the first modified OTOC.

APPENDIX F: ROBUSTNESS OF THE
PROTOCOLS

In this section, we give three examples showing how
random measurements are robust against different kinds of
perturbations. In each case, we consider the protocol with
local unitaries.

1. Limited reproducibility of generated
random unitaries

First, we analyze the robustness of our protocol with
respect to imperfections in the generation of random
unitaries. Specifically, we assume that hWðtÞiu;ks is
obtained from a random unitary matrix u ¼ u1 ⊗ � � � uN ,
with ui ∈ CUEð2Þ, while the second measurement
hV†WðtÞViu0;k0 is obtained from a slightly different unitary
u0 ¼ u01 ⊗ � � � u0N , which we write as

u0i ¼ Rizðθi1ÞRiyðθi2ÞRizðθi3Þui: ðF1Þ

Here, Riγ denotes single qubit rotations for spin i along the
γ axis, and θin are assumed to be random angles drawn
uniformly in ½−θ; θ�, which represent the unwanted mis-
match between the unitaries u and u0.

a. Analytical understanding of the robustness
of the protocol

To show that our protocol is robust against such
imperfections, we calculate the estimator of the OTOC,
obtained from

ÕnðtÞ ¼
P

ks∈En
ckshWðtÞiu;kshV†WðtÞViu0;k0P

ks∈En
ckshWðtÞiu;kshWðtÞiu;k0

: ðF2Þ

To first order θin, we can write u0 ¼ uþP
i;n θinAin, with

Ain ¼ R0
inð0Þu. This leads to

hWðtÞiu;kshV†WðtÞViu0;k0
¼ hWðtÞiu;kshV†WðtÞViu;k0
þ
X
i;n

θin hWðtÞiu;ksTrð½uρ0A†
in þ Ainρ0u†�V†WðtÞVÞ;

where the second term vanishes because of θin ¼ 0. This
implies that ÕnðtÞ ¼ OnðtÞ. Our protocol is thus robust
to first order in θ against imperfections of the generated
unitaries. As shown below, the quadratic contribution
scales linearly with the characteristic size LðtÞ of the
operator WðtÞ.

b. Numerical example

We now consider a numerical example for the model of
scrambling presented in Sec. III B and the estimation of the
first modified OTOC n ¼ 0. To assess the robustness of
statistical correlations, we consider j > LðtÞ, so that the
exact OTOC is O0ðtÞ ¼ 1, and imperfect generated uni-
taries as written above.
The numerical results are shown in Fig. 11 and confirm

our analytical treatment: There is no linear correction in θ
in the error E of the estimated OTOC. However, the error

(a) (b)

(c) (d)

FIG. 10. Additional simulations on statistical errors. (a) Scal-
ings of the error E in the estimation of OðtÞ as a function of Nu
with global unitaries, and NM → ∞. We use the two values
N ¼ 4, 8 (circles, stars). (b,c) Same as panel (a) for local
unitaries estimating O0;1ðtÞ (here, the simulations are indepen-
dent of N). (d) Statistical errors for the estimation of O0ðtÞ as a
function of NM, and Nu ¼ 2000. In all panels, the dashed lines
represent 1=

ffiffiffiffiffiffi
Nu

p
.
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scales as θ2L, showing that the quadratic contribution does
not vanish.

2. Robustness against the depolarizing channel

In the presence of depolarizing noise [39], the realized
quantum state can be written as

ρf ¼ ð1 − pÞUtotðtÞρ0U†
totðtÞ þ

pI
dN

; ðF3Þ

with 0 < p < 1 the depolarization probability, I the iden-
tity matrix, and UtotðtÞ the desired time-evolution unitary
operator. This case translates to the measurement outcomes
[for the sequence shown in Fig. 1 with UtotðtÞ ¼ UðtÞu (a)
and UtotðtÞ ¼ UðtÞVu (b)]

hWðtÞi0u;ks ¼ ð1 − pÞhWðtÞiu;ks ;
hV†WðtÞVi0u;k0 ¼ ð1 − pÞhV†WðtÞViu;k0 ; ðF4Þ

where we use the fact thatWðtÞ is traceless. Hence, the two
measurements are simply rescaled, and the statistical
correlations are not affected by the depolarizing channel.
This case is illustrated in Fig. 7(d), where the numerical
simulation [for the same model and parameters as in
Figs. 7(a)–7(c)] shows that the effect of depolarization
can be completely eliminated by performing a sufficient
number of projective measurements NM.

3. Robustness against readout errors

We now show that our protocols are also robust against
readout errors. Here, we consider, for concreteness,
W ¼ σzj. For each random unitary u, and initial state ks
(k0), we assume that each measurement of the operator is
estimated as

hWðtÞiestu;ks
¼ 2Pestðt;↑; ujksiÞ − 1;

hVWðtÞViestu;k0
¼ 2Pestðt;↑; uVjk0iÞ − 1; ðF5Þ

where Pestðt;↑; jkiÞ is the estimated probability to detect
spin j in state ↑ after time evolution from the state jki. We
now consider that the estimated probabilities Pestðt;↑; jkiÞ
are built from a sequence of NM measurements,

Pestðt;↑; jkiÞ ¼ 1

NM

X
i

Xi; ðF6Þ

with Xi the measurement outcomes obtained with error
probability x:

ProbðXi ¼ 1Þ ¼ ð1 − xÞPðt;↑; jkiÞ þ xPðt;↓; jkiÞ
¼ ð1 − 2xÞPðt;↑; jkiÞ þ x: ðF7Þ

In the limit of an infinite number of measurements (NM →
∞), we obtain Pestðt;↑; jkiÞ ¼ ProbðXi ¼ 1Þ, and thus

hWðtÞiestu;ks
¼ ð1 − 2xÞhWðtÞiu;ks ;

hVWðtÞViestu;k0
¼ ð1 − 2xÞhVWðtÞViestu;k0

: ðF8Þ

Accordingly, as in the case of the depolarizing channel,
readout errors simply rescale the value of the observables;
i.e., the estimation of OnðtÞ is not affected by readout
errors.

APPENDIX G: ACCESSING OTOCs FOR
NONINFINITE-TEMPERATURE STATES

In this section, we show how to extend our protocol
beyond the case of infinite temperature ρ ¼ I=NH.

1. Thermal OTOCs from global unitaries

First, we show how our protocol can be extended
to include finite-temperature corrections to OðtÞ. To this
end, we employ a high-temperature expansion of the
thermal density matrix ρβ ¼ expð−βHÞ=Z, with H being
the many-body Hamiltonian of the system of interest Z ¼
Tr½expð−βHÞ� and β the inverse temperature. Specifically,
instead of considering the canonical finite-temperature
OTOC

O½ρβ�ðtÞ ¼ TrðρβWðtÞVWðtÞVÞ; ðG1Þ

with ρβ a thermal density matrix, we consider a sym-
metrized variant, introduced in Ref. [31],

OS½ρβ�ðtÞ ¼ Trðρ1=4β WðtÞρ1=4β Vρ1=4β WðtÞρ1=4β VÞ: ðG2Þ

Here, and in the following, we assume WðtÞ to be
Hermitian, V to be Hermitian and unitary, and all operators
W, V, H to be traceless (which is the case for the spin
models considered in the main text). We employ a high-
temperature expansion of ρβ ∼ ðI − βHÞ=NH þOðβ2Þ. To
first order in β, we find

FIG. 11. Robustness of the protocol with respect to a mismatch
between generated random unitaries in the estimation of the first
modified OTOC. The error E is plotted as a function of the scaling
parameter θ2L, for L ¼ 4, 6, 8 and 0 < θ < 0.2 Note that for all
data points, the error is below 6%.
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OS½ρβ�ðtÞ ¼ OðtÞ − β

2NH
fTr½HWðtÞVWðtÞV�

þ Tr½HVWðtÞVWðtÞ�g þOðβ2Þ: ðG3Þ

We now introduce the statistical correlations

C̃ðtÞ ¼ hWðtÞiu;k0hVWðtÞViu;k0hHiu;k0 ;

with u global random unitaries of the CUE and hAiu;k0 ¼
hψujAjψui. Using the 3-design properties [52] of the CUE,
we obtain

C̃ðtÞ ¼ c0
X
τ∈S3

Trðτ½WðtÞ ⊗ VWðtÞV ⊗ H�Þ;

with c0 ¼ ½NHðNH þ 1ÞðNH þ 2Þ�−1. This result can be
rewritten as

C̃ðtÞ ¼ c0fTr½HWðtÞVWðtÞV� þ Tr½HVWðtÞVWðtÞ�g:

Using Eqs. (G3) and (G4), and OðtÞ ¼ ÕðGÞðtÞ, we obtain

OS½ρβ�ðtÞ ¼ OðtÞ − β

2c0NH
C̃ðtÞ; ðG4Þ

which shows that OS½ρβ�ðtÞ can be accessed by separately
measuring (i) the T ¼ ∞ value OðtÞ as described in the
main text and (ii) the additional correlations C̃ðtÞ. This
result shows that thermal OTOCs are experimentally
accessible by measuring statistical correlations. The addi-
tional requirement compared to the measurement of OðtÞ
is the measurement of the energy hHiu;k0 of random initial
states.

2. OTOCs for arbitrary states from global unitaries

We now generalize the previous approach and show that
we can access, for an arbitrary state ρ (thermal or not),
another symmetric variant of OTOCs,

OS0 ½ρ�ðtÞ ¼
1

2
fTr½ρWðtÞVWðtÞV� þ Tr½WðtÞρVWðtÞV�g:

ðG5Þ

Note that for thermal states ρ ¼ ρβ, OS0 ½ρβ�ðtÞ and
OS½ρβ�ðtÞ coincide to first order in β. Also, when V and
ρ commute, this variant is equivalent to the standard OTOC,
i.e., OS0 ½ρ�ðtÞ ¼ O½ρ�ðtÞ. Now, we introduce the statistical
correlations

C̃0ðtÞ ¼ hWðtÞiu;k0hVWðtÞViu;k0hρiu;k0 ;

with the same notations as in Appendix G 1. Note that
the last term hρiu;k0 simply consists in measuring the

probability that the state ρ is in the random state jψui.
We then obtain, using 3-design properties,

C̃0ðtÞ ¼ c0
X
τ∈S3

Trðτ½WðtÞ ⊗ VWðtÞV ⊗ ρ�Þ;

which corresponds to a sum ofOS0 ½ρ�ðtÞ and of lower-order
terms that can be measured independently (such as the
infinite temperature OTOC). Thus, OS0 ½ρ�ðtÞ can be mea-
sured via statistical correlations.
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Browaeys, Synthetic Three-Dimensional Atomic Structures
Assembled Atom by Atom, Nature (London) 561, 79 (2018).

VERMERSCH, ELBEN, SIEBERER, YAO, and ZOLLER PHYS. REV. X 9, 021061 (2019)

021061-14



[14] A. Keesling, A. Omran, H. Levine, H. Bernien, H.
Pichler, S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S.
Sachdev, P. Zoller, M. Endres, M. Greiner, V. Vuletic, and
M. D. Lukin, Probing Quantum Critical Dynamics on a
Programmable Rydberg Simulator, Nature (London) 568,
207 (2019).

[15] J. Z. Blumoff, K. Chou, C. Shen, M. Reagor, C. Axline,
R. T. Brierley, M. P. Silveri, C. Wang, B. Vlastakis, S. E.
Nigg, L. Frunzio, M. H. Devoret, L. Jiang, S. M. Girvin, and
R. J. Schoelkopf, Implementing and Characterizing Precise
Multiqubit Measurements, Phys. Rev. X 6, 031041 (2016).

[16] R. Barends et al., Digitized Adiabatic Quantum Computing
with a Superconducting Circuit, Nature (London) 534, 222
(2016).

[17] J. S. Otterbach et al., Unsupervised Machine Learning on a
Hybrid Quantum Computer, arXiv:1712.05771.

[18] M. Gong et al., Genuine 12-qubit entanglement on a
superconducting quantum processor, Phys. Rev. Lett.
122, 110501 (2019).

[19] P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, Chaos in
Quantum Channels, J. High Energy Phys. 02 (2016) 004.

[20] P. Calabrese and J. Cardy, Quantum Quenches in 1þ 1

Dimensional Conformal Field Theories, J. Stat. Mech.
(2016) 064003.

[21] A. Bohrdt, C. B. Mendl, M. Endres, and M. Knap, Scram-
bling and Thermalization in a Diffusive Quantum Many-
Body System, New J. Phys. 19, 063001 (2017).

[22] C. W. von Keyserlingk, T. Rakovszky, F. Pollmann, and
S. L. Sondhi, Operator Hydrodynamics, OTOCs, and En-
tanglement Growth in Systems without Conservation Laws,
Phys. Rev. X 8, 021013 (2018).

[23] A. Nahum, S. Vijay, and J. Haah, Operator Spreading
in Random Unitary Circuits, Phys. Rev. X 8, 021014
(2018).

[24] R. Fan, P. Zhang, H. Shen, and H. Zhai, Out-of-Time-Order
Correlation for Many-Body Localization, Sci. Bull. 62, 707
(2017).

[25] Y. Huang, Y. Zhang, and X. Chen, Out‐of‐Time‐Ordered
Correlators in Many‐Body Localized Systems, Ann. Phys.
(Berlin) 529, 1600318 (2017).

[26] X. Chen, T. Zhou, D. A. Huse, and E. Fradkin, Out-of-Time-
Order Correlations in Many-Body Localized and Thermal
Phases, Ann. Phys. (Berlin) 529, 1600332 (2017).

[27] S. Sachdev and J. Ye, Gapless Spin-Fluid Ground State in a
Random Quantum Heisenberg Magnet, Phys. Rev. Lett. 70,
3339 (1993).

[28] A. Kitaev, A Simple Model of Quantum Holography. KITP
Strings Seminar and Entanglement Program (2015).

[29] P. Hayden and J. Preskill, Black Holes as Mirrors: Quantum
Information in Random Subsystems, J. High Energy Phys.
09 (2007) 120.

[30] S. H. Shenker and D. Stanford, Black Holes and the
Butterfly Effect, J. High Energy Phys. 03 (2014) 067.

[31] J. Maldacena, S. H. Shenker, and D. Stanford, A Bound on
Chaos, J. High Energy Phys. 08 (2016) 106.

[32] S. Banerjee and E. Altman, Solvable Model for a Dynamical
Quantum Phase Transition from Fast to Slow Scrambling,
Phys. Rev. B 95, 134302 (2017).

[33] D. A. Roberts and B. Yoshida, Chaos and Complexity by
Design, J. High Energy Phys. 04 (2017) 121.

[34] S. Pappalardi, A. Russomanno, B. Žunkovič, F. Iemini, A.
Silva, and R. Fazio, Scrambling and Entanglement Spreading
in Long-Range Spin Chains, Phys. Rev. B 98, 134303 (2018).

[35] S. V. Syzranov, A. V. Gorshkov, and V. M. Galitski,
Interaction-Induced Transition in the Quantum Chaotic
Dynamics of a Disordered Metal, Ann. Phys. (Amsterdam)
405, 1 (2019).

[36] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden,
Measuring the Scrambling of Quantum Information, Phys.
Rev. A 94, 040302(R) (2016).

[37] G. Zhu, M. Hafezi, and T. Grover, Measurement of Many-
Body Chaos Using a Quantum Clock, Phys. Rev. A 94,
062329 (2016).

[38] H. Shen, P. Zhang, R. Fan, and H. Zhai, Out-of-Time-Order
Correlation at a Quantum Phase Transition, Phys. Rev. B
96, 054503 (2017).

[39] B. Yoshida and N. Y. Yao, Disentangling Scrambling and
Decoherence via Quantum Teleportation, Phys. Rev. X 9,
011006 (2019).

[40] N. Y. Yao, F. Grusdt, B. Swingle, M. D. Lukin, D. M.
Stamper-Kurn, J. E. Moore, and E. A. Demler, Interfero-
metric Approach to Probing Fast Scrambling, arXiv:1607
.01801.

[41] J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. Peng,
and J. Du, Measuring Out-of-Time-Order Correlators on a
Nuclear Magnetic Resonance Quantum Simulator, Phys.
Rev. X 7, 031011 (2017).

[42] M. Gärttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J.
Bollinger, and A. M. Rey, Measuring Out-of-Time-Order
Correlations and Multiple Quantum Spectra in a Trapped-
Ion Quantum Magnet, Nat. Phys. 13, 781 (2017).

[43] B. Swingle and N. Yunger Halpern, Resilience of Scram-
bling Measurements, Phys. Rev. A 97, 062113 (2018).

[44] K. A. Landsman, C. Figgatt, T. Schuster, N. M. Linke, B.
Yoshida, N. Y. Yao, and C. Monroe, Verified Quantum
Information Scrambling, Nature (London) 567, 61 (2019).

[45] I. Bloch, J. Dalibard, and S. Nascimbène, Quantum Sim-
ulations with Ultracold Quantum Gases, Nat. Phys. 8, 267
(2012).

[46] F. Haake, Quantum Signatures of Chaos (Springer,
New York, 2010), Vol. 54.

[47] C. Dankert, R. Cleve, J. Emerson, and E. Livine, Exact and
Approximate Unitary 2-Designs and Their Application to
Fidelity Estimation, Phys. Rev. A 80, 012304 (2009).

[48] Y. Nakata, C. Hirche, M. Koashi, and A. Winter,
Efficient Quantum Pseudorandomness with Nearly Time-
Independent Hamiltonian Dynamics, Phys. Rev. X 7,
021006 (2017).

[49] A. Elben, B. Vermersch, M. Dalmonte, J. I. Cirac, and P.
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