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Verified quantum information scrambling
K. A. Landsman1*, C. Figgatt1,6, t. Schuster2, N. M. Linke1, B. Yoshida3, N. Y. Yao2,4 & C. Monroe1,5

Quantum scrambling is the dispersal of local information into 
many-body quantum entanglements and correlations distributed 
throughout an entire system. This concept accompanies the 
dynamics of thermalization in closed quantum systems, and has 
recently emerged as a powerful tool for characterizing chaos in 
black holes1–4. However, the direct experimental measurement 
of quantum scrambling is difficult, owing to the exponential 
complexity of ergodic many-body entangled states. One way to 
characterize quantum scrambling is to measure an out-of-time-
ordered correlation function (OTOC); however, because scrambling 
leads to their decay, OTOCs do not generally discriminate between 
quantum scrambling and ordinary decoherence. Here we implement 
a quantum circuit that provides a positive test for the scrambling 
features of a given unitary process5,6. This approach conditionally 
teleports a quantum state through the circuit, providing an 
unambiguous test for whether scrambling has occurred, while 
simultaneously measuring an OTOC. We engineer quantum 
scrambling processes through a tunable three-qubit unitary 
operation as part of a seven-qubit circuit on an ion trap quantum 
computer. Measured teleportation fidelities are typically about 80 
per cent, and enable us to experimentally bound the scrambling-
induced decay of the corresponding OTOC measurement.

The dynamics of strongly interacting quantum systems lead to the 
local memory loss of initial conditions, analogous to the chaotic behav-
iour of classical systems. At first glance, this appears inconsistent with 
the reversible or unitary nature of quantum time-evolution. The reso-
lution lies in the fact that such local quantum information generically 
becomes delocalized throughout the entire system, and thus hidden 
in nonlocal degrees of freedom. This quantum scrambling process has 
sharpened our understanding of the limits of thermalization and chaos 
in quantum systems1–4. At one extreme, certain disordered systems can 
evade thermalization entirely, leading to the slow logarithmic spread of 
quantum information7. At the other extreme, the existence of a max-
imum speed limit for thermalization—known as ‘fast-scrambling’—
is conjectured to occur in certain large-N gauge theories8 as well as 
the dynamics of black holes1–4. Synergy with the latter extends both 
ways: many of the tools and ideas originally developed in the context 
of black hole physics9–12 have been found to be useful in characterizing 
the scrambling behaviour of generic many-body systems.

These wide-ranging impacts of quantum scrambling have stimulated 
the search for experimental evidence13–19 of scrambling dynamics that 
could help shed light on quantum non-equilibrium processes in exotic 
materials20,21 and the fast-scrambling dynamics of black holes1–4. 
Recent work has focused on so-called OTOCs3,4,22, which take the form 
V W t VW tˆ ˆ ( ) ˆ ˆ ( )† † , where V̂ and Ŵ are unitary operators acting on sep-

arate subsystems. The operator =W t U WUˆ ( ) ˆ ˆ ˆ†  is the time-evolved 
version of W under the unitary operator = − HÛ e i tˆ  generated through 
either a Hamiltonian H or an equivalent digital quantum circuit. As 
scrambling proceeds, W tˆ ( ) becomes increasingly nonlocal, causing the 
OTOC to decay23, which is taken as an experimental indication of 
scrambling15–18.

However, it is difficult to distinguish between information scram-
bling and extrinsic decoherence in the OTOC’s temporal decay.  

For example, non-unitary time-evolution arising from depolarization 
or classical noise processes naturally lead the OTOC to decay, even in 
the absence of quantum scrambling. A similar decay can also originate 
from even slight mismatches between the purported forward and back-
wards time-evolution of W tˆ ( ) (refs 6,16 and 24). Although full quantum 
tomography can in principle distinguish scrambling from decoherence 
and experimental noise, this requires a number of measurements that 
scales exponentially with system size and is thus impractical.

In this work, we overcome this challenge and implement a quantum 
teleporation protocol that robustly distinguishes information scram-
bling from both decoherence and experimental noise5,6. Using this pro-
tocol, we demonstrate verifiable information scrambling in a family 
of unitary circuits and provide a quantitative bound on the amount of 
scrambling observed in the experiments.

The intuition behind our approach lies in a re-interpretation of the 
black-hole information paradox9,10, under the assumption that the 
dynamics of the black hole can be modelled as a random unitary oper-
ation Û  (Fig. 1). Schematically, an observer (Alice) throws a secret 
quantum state into a black hole, while an outside observer (Bob) 
attempts to reconstruct this state by collecting the Hawking radiation 
emitted at a later time1,10.

An explicit decoding protocol has been recently proposed5,6, which 
enables Bob to decode Alice’s state using a quantum memory, an ancil-
lary entangled pair of qubits, and knowledge of the effective black-hole 
unitary Û  (ref. 25). The protocol requires Bob to apply ∗Û  to his own 
quantum memory and one half of the ancillary entangled pair. 
Following this, Bob performs a projective measurement, which plays 
the part of teleporting Alice’s secret quantum state to the reference qubit 
in Bob’s ancillary entangled pair. The successful decoding of Alice’s 
quantum information is only possible because of the maximally scram-
bling dynamics of the unitary, which ensure that the information about 
Alice’s secret state is almost immediately distributed throughout the 
entire system1,26. Since maximally scrambling dynamics are requisite 
for successful teleportation, the teleportation fidelity provides a fail-safe 
diagnostic for true quantum information scrambling (see Methods 
section ‘Brief overview of quantum teleportation’).

Unlike a direct measurement of OTOCs, this protocol can explicitly 
distinguish scrambling from either decoherence or a mismatch between 
forward and backward time-evolution (that is, the encoding and decod-
ing unitaries Û  and ∗Û ). Moreover, the success probability of the pro-
jective measurement provides an independent measure of the average 
experimental value of the OTOC, which includes the effects of both 
noise and decoherence6. By comparing the teleportation fidelity and 
the success probability, one can quantitatively and unambiguously 
bound the amount of quantum scrambling by the unitary operation Û.

We experimentally implement the above teleportation protocol on 
a seven-qubit fully connected quantum computer27 using a family of 
three-qubit scrambling unitaries Ûs. Our quantum computer is realized 
with a crystal of trapped atomic +Yb171  ion qubits, defined by the hyper-
fine ‘clock’ states, as described in Methods section ‘Experimental 
details’. We confine nine ions in the linear ion trap and use the nearly 
equally spaced middle seven ions for the circuit. We can drive single 
qubit gates on any of the seven qubits with a typical fidelity of 99.0(5)% 
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and entangling two-qubit gates on any pair of qubits with a typical 
fidelity of 98.5(5)% (see Methods section ‘Experimental details’). 
Projective measurements of the qubits in any basis are performed with 
standard fluorescence techniques28, with a qubit readout fidelity of 
99.4(1)%. In combination, Bell state preparation and measurement can 
be performed with a fidelity of 98(1)% and are generated by a compiler 
that pieces together native, one- and two-qubit gates to produce the 
desired gates in a modular fashion27.

A schematic of the experiment is depicted in Fig. 1. The first qubit is 
prepared in a designated single-qubit state ∣ ⟩ψ . We initialize the six 
additional qubits in three Einstein–Podolsky–Rosen (EPR) pairs, 
∣ ⟩ ∣ ⟩ ∣ ⟩= +EPR ( 00 11 )1

2
, between qubits (2, 5), (3, 4) and (6, 7). We 

perform the scrambling unitary Ûs on qubits 1 to 3, and the decoding 
unitary = ∗U Uˆ ˆ

d s  on qubits 4 to 6. The explicit form of these unitaries 
and their decompositions into two-qubit gates is detailed in Methods 
section ‘Implementing and optimizing scrambling operators’. We com-
plete the decoding protocol by projectively measuring any designated 
pair of qubits—a chosen qubit ∈p {1, 2, 3} and its complement qubit 

− ∈p(7 ) {4, 5, 6}—onto an EPR pair. In the absence of decoherence and 
errors, the probability ψP  of a successful projective measurement can 
be directly related to the OTOC by:

⟨ ⟩∑=ψ
φ

P O O t O O tˆ ˆ ( ) ˆ ˆ ( ) (1)
O, ˆ

1
†

P
†

1 P
P

where ∣ ⟩ ⟨ ∣ψ φ≡Ô1  acts on qubit 1, ∑φ O, ˆ
P
 denotes an average over  

single-qubit quantum states φ and the Pauli operators ÔP acting on  
the projectively measured qubit, and5,6 =O t U O Uˆ ( ) ˆ ˆ ˆ

P s
†

P s . If the EPR 
projection is successful, the decoding of the initial state ∣ ⟩ψ  can  
be quantified via the teleportation fidelity: ∣ ⟨ ∣ ⟩ ∣ϕ ψ=ψF 2, where ∣ ⟩ϕ   

is the final state of the ancillary qubit 7. To characterize the nature of  
different scrambling unitaries, we repeat this protocol for initial states 
∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ψ ∈ { 0 , 1 , 0 , 1 , 0 , 1 }x x y y z z , where ∣ ⟩α0(1)  denotes the 
positive (negative) eigenstate of the Pauli operator σα.

We begin by illustrating the challenge associated with interpreting 
conventional OTOC experimental measurements15–18. In particular, 
we perform a control experiment with a non-scrambling unitary in the 
presence of deliberate experimental errors (Fig. 2a): specifically, we take 
Ûs to be the identity operation, and introduce single-qubit rotational 
errors (parameterized by strength θ) following the operation of Ûs, but 
not the decoding operation Ûd, creating a mismatch between forward 
and backward time-evolution. To allow for a fair comparison with the 
case of maximally scrambling unitaries, we implement the identity 
operator as a combination of one- and two-qubit gates of comparable 
complexity (and total number). As we increase the size of the mismatch 
error, we see that the average OTOC (as measured by ψP ) decays, con-
sistent with the expected sensitivity of the OTOC to experimental noise 
(Fig. 2). Crucially however, the decoding fidelity remains constant near 
50%, the expected fidelity for an unknown qubit state, confirming that 
no scrambling has taken place.

In the ideal case, both the teleportation fidelity ψF( )  and the average 
OTOC ψP( )  probe only scrambling and are thus redundant. This is 
reflected in the error-free relation + − =ψ ψ ψd d F P P[( 1) ] 11 1 , where 
d1 is the dimension of the initial state ∣ ⟩ψ  (in our case, d1 = 2) and the 
average is performed over all initial states. Decoherence and experi-
mental error lead to deviations from this relation, which we quantify 
with the effective noise factor6

⟨ ⟩ ⟨ ⟩≡ + −ψ ψ ψN d d F P P[( 1) ] (2)1 1

whose decay from unity signals the presence of error-induced OTOC 
decay in our quantum circuit. Note that =N 1 in the ideal case  
and = .N 0 25 (that is, /d1 1

2) in the fully decohered case. As expected, 
the observed N  decreases with increasing mismatch (Fig. 2e), reflect-
ing the deliberate error-induced decay of the OTOC, despite the lack 
of any quantum scrambling dynamics. Moreover, the measured value 
of N  ≈ 0.60–0.75 at zero mismatch (θ = 0) reflects the inherent errors 
in the experiment, which are expected from the many gates compris-
ing the EPR preparation, unitary operation and EPR measurement.

With the control experiment in hand, we now characterize informa-
tion scrambling for a family of unitary operators αÛ ( )s  that continu-
ously interpolate (Fig. 2b) between the identity operator (α = 0) and a 
maximally scrambling unitary (α = 1), as described in Methods section 
‘Implementing and optimizing scrambling operators’. The gate decom-
position of the αÛ ( )s  operation varies only in single-qubit rotations 
about the z-axis, which are performed classically with negligible error. 
Similar to the previous case, we observe the average OTOC to decay as 
the scrambling parameter, α, is tuned from 0 to 1, as shown in Fig. 2c. 
However, unlike the case of the deliberate mismatch-error in Fig. 2a, 
the OTOC decay is accompanied by an increase in the decoding tele-
portation fidelity, indicating the presence of true quantum information 
scrambling. Measurement of a relatively constant noise factor confirms 
that the experimental error does not depend strongly on the parameter 
α and thus cannot fully account for the decay of the OTOC. In our 
system, the error scales with the number and type of gates, which are 
constant across the interpolation.

Using our experimentally measured noise factor N , we can bound 
the true, scrambling-induced decay of the OTOC for error-free 
time-evolution via the unitaries αÛ ( )s . Assuming that extrinsic deco-
herence is negligible (that is, that coherent errors dominate the exper-
iment), we find that the ideal average OTOC can be upper-bounded 
by6: ⟨ ⟩ /ψ NP4 2 2. Therefore, we can experimentally upper-bound the 
value of the OTOC for the maximally scrambling unitary, α =Û ( 1)s , by 
approximately 0.47(2).

To demonstrate that our scrambling unitaries are indeed delocalizing 
information across the entire system, we show that teleportation  
succeeds independently of the chosen subsystem partition. To do this, 
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Fig. 1 | Experimental quantum circuit. Schematic of our 7-qubit circuit, 
which uses quantum teleportation to detect information scrambling. Qubit 
1 represents the state to be teleported, while the remaining six qubits are 
prepared in EPR pairs (vertical lines). The first three qubits are acted on by 
the unitary, Û , whose scrambling properties are to be characterized. To 
perform teleportation, qubits 4 to 6 are acted on by the conjugate unitary 

∗
Û , and a projective EPR measurement is performed on any pair of qubits: 
(3, 4), (2, 5) or (1, 6). If the unitary Û  is maximally scrambling, the 
information stored in qubit 1 is delocalized, and decoding becomes 
possible, as seen by the measurement-heralded teleportation of qubit 1’s 
state to qubit 7. The underlay depicts an analogy between our protocol and 
information propagation through a traversable wormhole11,12; within this 
interpretation, Alice attempts to teleport her qubit to Bob, who has control 
over qubits 3 to 7. This interpretation is further clarified in the discussions.
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we select three different pairs of qubits to be projectively measured in 
the final decoding step, corresponding to the three qubits acted upon 
by the scrambling unitary Ûs. Decoding succeeds with a fidelity of 
70–80% for all projectively measured pairs and all initial states 
(Fig. 3). By contrast, the same protocol applied to the non-scrambling 
identity operator results in a nontrivial decoding fidelity for only a 
single pair, in which case the entire protocol reduces to the standard 
setup for quantum teleportation (Fig. 3). Taken together, these meas-
urements demonstrate the full delocalization of the initially local 

information of the input state ∣ ⟩ψ  via the maximally scrambling  
unitary Ûs.

Intriguingly, time-evolution that is not maximally scrambling may 
nevertheless scramble some subset of information. For example, in 
strongly disordered systems, localization can lead to the scrambling 
of phase information but not the scrambling of population7; this  
situation would correspond to a sort of ‘classical scrambler’ wherein 
teleportation only occurs for z-basis states. Such classical scram-
blers may provide insight into connections between quantum and 

Fig. 2 | Quantum scrambling parameterization. a, Circuit designed to 
demonstrate that a mismatch between Ûs and Ûd naturally leads to the 
decay of the OTOC without enabling teleportation. Following the Ûs = I 
operation, we perform three additional independent rotations RX, RY and 
RZ on the qubits by angle θ and measure the state of qubit 7, ∣ ⟩ϕ . 
Accompanying data (orange symbols) for the averaged successful 
projective measurement ψP , averaged teleportation fidelity ψF  and noise 
factor N  as a function of θ are depicted in c, d and e. b, Circuit designed to 
probe the OTOC and teleportation fidelity as a function of the scrambling 
parameter α with α = 0 representing no scrambling and α = 1 representing  
full scrambling. Accompanying data (purple symbols) for ψP , ψF  and N  
as a function of θ are depicted in c, d and e. c–e, For the mismatch circuit 
shown in a, we find that the teleportation fidelity remains near its minimal 
value, ψF  ≈0.5, for all θ, consistent with our expectation that scrambling 
is not occurring. However, one observes that the OTOC (as measured via 

ψP ) decays to nearly zero, which would nominally suggest scrambling. 
This is precisely the challenge with interpreting OTOC measurements as 

an indicator of scrambling in noisy experiments. Finally, as expected, we 
observe that the noise parameter N  decays as the mismatch grows. For the 
tunable scrambling circuit shown in b, we find that the teleportation 
fidelity increases as we increase our scrambling parameter α. This increase 
in teleportation fidelity is accompanied by a decrease in the OTOC (as 
measured via ψP ), indicating that the OTOC’s decay is caused, at least in 
part, by true scrambling dynamics. Finally, the noise parameter N  remains 
relatively constant because the complexity and therefore experimental 
errors associated with implementing αÛ( ) are mostly α-independent. 
Dashed lines represent theory curves that are obtained via numerical 
simulations of the circuit assuming a one-parameter coherent error model 
(see Methods for details). Error bars indicating statistical uncertainties are 
smaller than the data points and are omitted. Deviations between 
simulations and data are probably caused by systematic errors, such as 
experimental drift and imperfect calibration. Data represented are 
obtained by averaging 18,000 experimental repitions, 3,000 for each of the 
six teleported states described in the main text.
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Fig. 3 | Teleportation of Pauli operator eigenstates. a, Teleportation 
fidelities ψF  for maximally scrambling α =U( ˆ ( 1))s  and classically 
scrambling U( ˆ )c  unitaries are presented for all teleported states as well as 
all subsystems {3, 4}, {2, 5} and {1, 6} that were used for the projective 
measurement (indicated as different bar colours). In the case of the 
maximally scrambling unitary, all basis states and all measurement Bell 
pairs lead to successful teleportation, demonstrating the full delocalization 
of Alice’s quantum state. In the case of the classical scrambling unitary,  

we projectively measure on subsystem {3, 4}. Only the z-basis states are 
successfully teleported. Data (for Ûs) averaged over all six teleported states 
is shown in the final column. Data are depicted with the same colour 
scheme as in b. b, Measurements of ψP  from the experiments described in a.  
The probabilities averaged over all basis states constitutes the average 
experimental OTOC. Error bars indicate statistical uncertainties. 
Experimental data points are calculated by averaging over 4,000 data 
points.
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classical chaos; moreover, measurements of state- and unitary-dependent  
scrambling may help to diagnose errors more precisely in digital many-
body quantum simulations29,30.

Thus far, our decoding protocols have all been probabilistic: they 
rely upon an EPR projective measurement to teleport the unknown 
quantum state. While the success probability of this EPR projection 
enables us to quantify the error-induced decay of the OTOC, one can 
also implement a deterministic version of the decoding protocol5,6 
(Fig. 4a). The intuition behind this deterministic decoder is to perform  
a search for the EPR pair through an implementation of Grover’s  
algorithm31 instead of post-selecting on a projective measurement (see 
in Methods section ‘Brief overview of Grover’s algorithm’). Scrambling 
remains the focus of this version; while the deterministic decoding 
fidelity can be lower-bounded by four-point OTOCs (similar to those 
in equation (1)), their precise measurement actually corresponds to 
certain averages of higher-point OTOCs. Such higher-point OTOCs3 
can serve as more fine-grained measures of chaos beyond four-point 
OTOCs, and may be able to diagnose higher moments of quantum  
randomness. Within the Grover-search variant of our decoding protocol,  
three states are deterministically decoded with an average fidelity of 
77(2)% (Fig. 4b).

Finally, we perform a further variation of this protocol that rein-
troduces a projective measurement as a means of purifying errors  
from the experiment, while retaining the same decoding strategy  
as above. Here, the same three initial states were decoded with an  
average fidelity of 78(2)% (Fig. 4b). That this purification leads to the 
same teleportation fidelity despite the additional gate depth (Fig. 4a, 
purple box) suggests that the fidelity of the EPR Grover search is 
roughly 85%. To demonstrate the generality of our approach, these 
Grover-based protocols were performed with a different class of maxi-
mally scrambling unitaries from the previous probabilistic protocol, as 
described in Methods section ‘Implementing and optimizing scram-
bling operators’.

Thus far, we have alluded to connections between our teleportation 
protocol and the scrambling dynamics of black holes. By further elu-
cidating this analogy, we hope to motivate future experiments as well 
as clarify our own. Interestingly, the scrambling-induced teleportation 
observed in our experiment can be reinterpreted as simulating the 
propagation of information through a traversable wormhole that con-
nects a pair of black holes (depicted schematically in Fig. 1)25,32. This 
reinterpretation is based upon the so-called Hayden–Preskill thought 
experiment, which demonstrates that one can utilize a quantum  
memory entangled with the black hole to decode information scram-
bled by the black hole1,10. In our experiment, qubit 1 contains the 
information to be scrambled and subsequently decoded. The EPR 
pairs (2, 5) and (3, 4) are analogous to the black hole entangled with 
a quantum memory, while (6, 7) is an ancillary EPR pair necessary to 
perform the decoding.

Our work opens the door to a number of intriguing future direc-
tions. First, by experimentally scaling to larger circuits, one should 
be able to probe the scrambling dynamics of Haar random unitaries, 
complementary to the scramblers studied here. Since the teleportation 
protocol enables the built-in verification of scrambling, it may provide  
a natural method for directly measuring the randomness intrinsic 
to such circuits. Second, while we have focused on the challenges of  
distinguishing between scrambling and decoherence in this work, our 
protocol suggests that scrambling circuits may provide a near-term 
method to benchmark and verify large-scale quantum simulations30. 
In particular, by probing the teleportation fidelity as a function of both 
input state complexity and circuit, many-body noise mechanisms could 
be measured that would be invisible to typical single- and two-qubit 
randomized benchmarking methods33. Finally, although our unitary 
is implemented as a digital quantum circuit, one could also choose to 
implement a unitary via Hamiltonian time evolution and to track the 
scrambling behaviour as a function of time.
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MEthods
Experimental details. Trapped ion qubits. We perform the experiment on a quantum 
computer consisting of a chain of nine 171Yb+ ions confined in a Paul trap and laser-
cooled near the motional ground state. The hyperfine-split /S2

1 2 ground level with 
an energy difference of 12.642821 GHz provides a pair of qubit states, ∣ ∣=0 0, 0  
and ∣ ∣=1 1, 0  with quantum numbers ∣F m, F , that are magnetic field independent 
to first order. The 1/e-coherence time of this so-called ‘atomic clock’ qubit is 1.5(5) 
s in our system, limited by magnetic field noise. Optical pumping is used to initialize 
the state of all ions, and the final states are measured collectively via state-dependent 
fluorescence detection28. Each ion is mapped to a distinct channel of a photomulti-
plier tube array. The average state detection fidelity is 99.4(1)% for a single qubit, 
while a 7-qubit state is typically read out with 92(1)% average fidelity, limited by 
channel-to-channel crosstalk. These state detection and measurement (SPAM) errors 
are characterized in detail by measuring the state-to-state error matrix.
Gate operations. Quantum operations are achieved by applying two Raman beams 
from a single 355-nm mode-locked laser, which form beat notes near the qubit 
frequency. The first Raman beam is a global beam applied to the entire chain, 
while the second is split into individual addressing beams to target each ion qubit 
(see Extended Data Fig. 1)27, controlled by a set of arbitrary waveform genera-
tors. Single-qubit gates are generated by driving resonant Rabi rotations (R-gates) 
of defined phase, amplitude and duration. Single-qubit Z-rotations are applied 
efficiently as classical phase advances. Two-qubit gates (XX-gates) are realized 
by illuminating two ions with beat-note frequencies near the motional sidebands 
and creating an effective spin–spin Ising interaction via transient entanglement 
between the state of two ions and all modes of motion34. To ensure that the motion 
is left disentangled from the qubit states at the end of the interaction, we employ a 
pulse shaping scheme35,36. We use only the middle seven ions in the chain as qubits, 
in order to ensure a higher uniformity in the ion spacing, matching the equally 
spaced individual addressing beams. The two edge ion qubits are neither manip-
ulated nor measured, but their contribution to the collective motion is included 
when creating the entangling operations.
Bell state preparation and measurement. In Fig. 2b, we depict Bell state pairs initially 
in the state ∣ ⟩ ∣ ⟩+00 111

2
. This entangled state is created using the following 

circuit:

XX (± 4 )
Rz (± 2 )

The sign of the XX gate depends on the pulse shape solution used for the particular 
gate, and is stored in a table in the control software, which then determines the 
appropriate Z rotation to create the Bell state. We use additional rotations to create 
the other Bell states from this circuit. We measure in the Bell basis by applying a 
simple CNOT gate followed by a Hadamard gate, and subsequent measurement 
of the two qubits.
Implementing and optimizing scrambling operators. The scrambling unitary 
used for the probabilistic teleportation scheme can be represented in the compu-
tational basis by the following matrix:

=







− − − −
− −

− −
− −

− −
− −
− −

− − −







Û 1
2

1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1

(4)s

Since this unitary is real, =
∗

U Uˆ ˆ
s s, simplifying the experimental sequence since 

= =
∗

U U Uˆ ˆ ˆ
d s s . The unitary fulfills the following set of equations which verify its 

scrambling property by showing that it delocalizes all single-qubit operators into 
three-qubit operators:

⊗ ⊗ = ⊗ ⊗

⊗ ⊗ = ⊗ ⊗

⊗ ⊗ = ⊗ ⊗

⊗ ⊗ = ⊗ ⊗

⊗ ⊗ = ⊗ ⊗

⊗ ⊗ = ⊗ ⊗

⊗ ⊗ = ⊗ ⊗

⊗ ⊗ = ⊗ ⊗

⊗ ⊗ = ⊗ ⊗

U X I I U X Z Z
U I X I U Z X Z
U I I X U Z Z X
U Y I I U Y X X
U I Y I U X Y X
U I I Y U X X Y
U Z I I U Z Y Y
U I Z I U Y Z Y
U I I Z U Y Y Z

( )
( )
( )
( )
( )
( )
( )
( )
( )

(5)

†

†

†

†

†

†

†

†

†

where X, Y, Z and I are the three Pauli operators and the identity operator. This 
delocalization of local operators under time-evolution is a key signature of scram-
bling, and one can in fact relate the weight of these time-evolved local operators to 
the decay of (averaged) OTOCs analytically. The unitary Ûs is implemented exper-
imentally using six two-qubit entangling gates (see Extended Data Fig. 2).

In the experimental implementation, we take advantage of the following identity 
to reduce the number of two-qubit gates needed:

U
=

UT

where the vertical line indicates that the qubits are in an EPR state.
In this way, we can combine the first two XX gates on ions 2 and 3 in Ûs (and 

similarly on ions 4 and 5 in Ûd) into two single-qubit X-rotations, as shown in 
Extended Data Fig. 3.

In Fig. 2 we vary the amount of scrambling in U parametrized by α. This is 
achieved by changing the angles of the Z-rotations depicted in Extended Data Fig. 5 
according to θ = ± απ

2
. When α = 0, the XX-gates combine to create the identity 

matrix, and when α = 1, the unitary corresponds to the maximally scrambling 
case shown in Extended Data Fig. 2. Additional Z-rotations are applied around the 
XX-gates to ensure that =

∗
U Uˆ ˆ

d s . In Fig. 3, we measure the delocalization of infor-
mation throughout the seven-qubit system in the presence of a maximally scram-
bling unitary α =Û ( 1)s . The Bell measurements used are depicted in Extended 
Data Fig. 4 with the same colour scheme.

For the data in Fig. 4, we compose the scrambling unitary depicted in Extended 
Data Fig. 6. This unitary has the following matrix representation in the compu-
tational basis:

=







− − − −
− −

− −
− − −

− −
− − − −
− − − −
− −







U 1
2 2

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

(7)CZ

We can confirm that this is indeed a maximally scrambling unitary via a set of 
equations analogous to equation (5). The optimized circuit used to implement this 
unitary experimentally is shown in Extended Data Fig. 7. We use a similar circuit 
to effect the classical scrambling unitary, Ûc, by implementing only the first three 
controlled-Z gates.

Lastly, the Grover search operator labelled G in Fig. 4 is realized using the  
following circuit:

π π π

π

The SWAP gate (the line connecting two Xs) is implemented classically by reas-
signing qubit labels.
Numerical simulations. Theory curves were obtained through numerical simu-
lation of the circuits in Methods section ‘Implementing and optimizing scrambling 
operators’ using a simple one-parameter coherent error model. To simulate coher-
ent errors, a random single-qubit (or two-qubit) unitary close to the identity was 
applied following each single-qubit (or two-qubit) gate. Single-qubit rotations 
about the z-axis were performed classically with negligible experimental error and 
were therefore omitted from this procedure. Random single-qubit (or two-qubit) 
unitary errors were taken as the exponential of a linear combination of the three 
single-qubit (or 15 two-qubit) traceless Hermitian matrices, with coefficients  
sampled from a normal distribution with mean 0 and standard deviation /ε 3 (or 
/ε 15). The resulting observables ψP  and ψF  were averaged over N = 10 reali-

zations of random error, and the same random errors were used for simulation at 
each experimental parameter. The error strengths ε = 0.232 for the mismatch scan 
and ε = 0.174 for the scrambling scan were chosen to minimize the sum of squared 
errors in ψP  and ψF . Deviations between simulations and data are pro bably 
caused by systematic errors, such as experimental drift and imperfect calibration. 
Furthermore, we expect the teleportation fidelities for the mismatch experiment 
in Fig. 2 to oscillate slightly around 50%. Instead, these data points are all just above 
50%. This is probably caused by unwanted residual entanglement from the 
noise-inducing identity operators described in the main text.
Brief overview of quantum teleportation. Quantum teleportation is a  
process in which the quantum state of a particle (often, a qubit) is instantaneously 

(8)

(3)

(6)
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transferred to another identical particle37. Say Alice wants to teleport the state ∣ ⟩ψ  
of her qubit to Bob. To begin, Alice and Bob must share a maximally entangled 
state, for instance an EPR pair ∣ ⟩ ∣ ⟩+ /( 00 11 ) 2, where Alice possesses the first 
qubit of the EPR pair and Bob the second. This is a bizarre state, possible in 
quantum mechanics, in which each qubit individually has a completely undeter-
mined quantum state, yet upon measurement the two qubits are guaranteed to be 
in identical states. To implement teleportation, Alice performs a certain EPR 
measurement on the two qubits in her possession, which succeeds with some 
finite probability. If successful, Bob’s half of the EPR pair will be instantaneously 
transformed into the quantum state ∣ ⟩ψ , and the state ∣ ⟩ψ  will be erased from 
Alice’s possession. Crucially, the finite success probability of Alice’s measurement 
forbids Bob from knowing whether teleportation was successful until Alice  
communicates her result to him, preventing any faster-than-light transfer of  
information.

In our protocol Bob, not Alice, is the one to perform the measurement, and thus 
the instantaneity of the teleportation is not the focus. Rather, the teleportation 
serves as a component of our protocol to decode Alice’s state after its scrambling 
by the unitary Û . If information of the state ∣ ⟩ψ  is fully delocalized, that is, scram-
bled, by the unitary, teleportation can occur via measurement of any of the qubits 
acted on by the unitary—even those which initially contained no information 
about the state. The success of teleportation therefore serves as a diagnostic of 
scrambling.
Brief overview of Grover’s algorithm. Grover’s algorithm is a quantum search 
algorithm, and one of the premier instances of a task that a quantum algorithm 
can perform provably faster than any classical algorithm31. In it one associates a 
set of quantum states with items of a database, and attempts to search for a given 

item of the database. To perform the algorithm, one begins by initializing a quan-
tum state that is an equal superposition of all possible database states. The search 
process involves repeated applications of an ‘oracle’ operator, which flips the phase 
of the searched-for state, alternating with an ‘amplification’ operator, which reflects 
the superposition about its mean amplitude. After each pair of operations the 
amplitude of the searched-for state is increased, and a measurement of the state of 
the system will return the searched-for state with increasing probability. An order 
unity success rate can be achieved in O N( ) steps, a quadratic speedup over the 
O(N) steps required in a classical search of an unsorted database.

In our protocol we search for an EPR pair on qubits (3, 4) in a two-qubit data-
base, that is, N = 22 =4. In this particular case of N = 4, Grover’s algorithm in  
fact succeeds with probability 1 after just one application of the oracle operator, 
which involves the unitaries Û  and ∗Û  and the Grover search operator5 G.

Data availability
All relevant data are available from the corresponding author upon request.
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Extended Data Fig. 1 | Experimental apparatus. Horizontal, dark-purple 
counter-propagating laser beams are illustrated with a large global beam 
illuminating one side of the chain and two of the seven individually 
modulated, tightly focused beams on the other side. The middle seven of 
the nine 171Yb+ ions are imaged, which allows us to address each qubit 

independently. Individual addressing is accomplished by imagining each 
ion onto an individual photomultiplier tube. The light purple, vertical light 
cones represent light collection from the ions onto the photomultiplier 
tubes.
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Extended Data Fig. 2 | Circuit representation of the scrambling unitary used for the probabilistic teleportation scheme. See equation (4). The 
scheme consists of six two-qubit entangling XX-gates and individual Z-rotations.
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Extended Data Fig. 3 | Experimental sequence used for the probabilistic teleportation scheme. Any one of the three Bell measurements can be used. 
The scrambling unitary has been simplified using the identity given in equation (6).
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Extended Data Fig. 4 | Circuit depicting the Bell measurement pairs 
used in Fig. 3a and b.
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(a)

(b)

Extended Data Fig. 5 | Circuit depicting experiment from Fig. 2.  
a, Circuit for the unitary used in Fig. 2. b, The same unitary with varying 
degrees of scrambling for the data in Fig. 2. The angles of the Z-rotations 

are changed according to θ = ± απ
2

 to continuously scan between not 
scrambling (α = 0) and maximally scrambling (α = 1).
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Extended Data Fig. 6 | Circuit representation of the scrambling unitary 
from equation (7), used for the data in Fig. 4. The breakdown into native 
gates for the experimental implementation is shown in Extended Data 
Fig. 7. A reduced circuit, made up of only the first three controlled-Z gates, 
is used to create the classical scrambling unitary Ûc.
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Extended Data Fig. 7 | The scrambling unitary from equation (7) compiled into native gates. This circuit was used for the measurements in Fig. 4.


