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ABSTRACT
We present a scalable and matrix-free eigensolver for studying two-
level quantum spin chain models with nearest-neighbor XX+YY
interactions plus Z terms. In particular, we focus on the Heisenberg
interaction plus random on-site �elds, a model that is commonly
used to study the many-body localization (MBL) transition. This
type of problem is computationally challenging because the vector
space dimension grows exponentially with the physical system size,
and the solve must be iterated many times to average over di�erent
con�gurations of the random disorder. For each eigenvalue prob-
lem, eigenvalues from di�erent regions of the spectrum and their
corresponding eigenvectors need to be computed. Traditionally, the
interior eigenstates for a single eigenvalue problem are computed
via the shift-and-invert Lanczos algorithm. Due to the extremely
high memory footprint of the LU factorizations, this technique is
not well suited for large number of spins L, e.g., one needs thou-
sands of compute nodes on modern high performance computing
infrastructures to go beyond L = 24. The new matrix-free approach,
proposed in this paper, does not su�er from this memory bottle-
neck and even allows for simulating spin chains up to L = 24 spins
on a single compute node. We discuss the OpenMP and hybrid
MPI–OpenMP implementations of matrix-free block matrix-vector
operations that are the key components of the new approach. The
e�ciency and e�ectiveness of the proposed algorithm is demon-
strated by computing eigenstates in a massively parallel fashion,
and analyzing their entanglement entropy to gain insight into the
MBL transition.
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1 INTRODUCTION
A fundamental assumption in the traditional theory of statistical
mechanics is that an isolated systemwill in general reach an equilib-
rium state, or thermalize. As early as themid-20th century, Anderson
demonstrated that a single particle moving in a highly disordered
landscape can violate this assumption [1]. While surprising, that
result does not readily extend to many-particle systems that ex-
hibit strong interactions between the constitutent particles. The
question of whether a similar e�ect could manifest in a strongly-
interacting many-body system remained open for decades. This
elusive phenomenon has been termed “many-body localization”
(MBL).

Recently, advances in both high performance computing and
experimental control of individual quantum particles have begun
to yield insight into MBL. Both experimental [3, 4, 13, 15, 21, 22]
and numerical [2, 5, 11, 14, 18] results have shown evidence of
localization in small strongly-interacting multiparticle systems of
10-20 spins. Unfortunately, extrapolating results from these small
system sizes to the in�nitely-large thermodynamic limit has proven
di�cult. This lack of clarity has inspired a vigorous debate in the
community about precisely what can be learned from small-size
results. For example, it has been proposed that certain features do
not actually exist at in�nite system size [7], and even that MBL
itself is only a �nite-size e�ect [23]!

The primary goal of most studies is to identify and characterize a
localization transition. In the thermodynamic limit, as the strength
of the system’s disorder increases, theory predicts a sharp, sudden
change from a thermal to a localized state. Unfortunately, in the
small systems available for study, that sharp transition turns into a
smooth crossover, leading to the confusion about what constitutes
the transition itself. Numerical evidence suggests that the transition
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sharpens rapidly as system size increases, so accessing as large
systems as possible is imperative for investigating MBL.

In pursuit of that goal, Luitz et al. used large-scale numerical
linear algebra to show a localization transition for system sizes
up to L = 22 [14], and in a following paper extracted useful data
up to L = 24 [19]. In order to compute interior eigenstates for the
MBL problem, the shift-and-invert Lanczos algorithm was used
in combination with sparse direct solvers for solving the linear
systems. One of the major disadvantages of this technique is that
constructing the LU factorizations becomes extremely memory
demanding, due to the so called �ll in, for large number of spins L.
Table 1 shows that the memory footprint of the LU factorization
computed via STRUMPACK [9] grows rapidly as function of L. See
also [19]. Hence, thousands of nodes on modern high performance
computing infrastructures are needed to go beyond L = 24.

Table 1: Total memory footprint as a function of the
spin chain length L for LU factorizations, computed via
STRUMPACK, and the new matrix-free LOBPCG algorithm,
with block size 64. The problem size is given by n.

L n STRUMPACK LOBPCG(64)
16 12,870 66MB 8MB
18 48,620 691MB 31MB
20 184,756 8GB 118MB
22 705,432 92GB 451MB
24 2,704,156 1 TB 2GB
26 10,400,600 15 TB 7GB

In this paper, we introduce an new approach based on the locally
optimal block preconditioned conjugate gradient (LOBPCG) algo-
rithm to overcome the memory bottleneck that the shift-and-invert
Lanczos algorithm faces. As shown in Table 1, we are able to reduce
the memory footprint by several orders of magnitude, e.g., from
15 TB to only 7GB for L = 26. This new approach will enable us to
simulate spin chains on a single node, even up to L = 24. For larger
spin chains we only require a few nodes.

The paper is organized as follows. We �rst review the Heisen-
berg spin model and MBL metrics in Section 2. Next, the LOBPCG
eigensolver with e�cient matrix-free block matrix-vector opera-
tions is discussed in Section 3. Then in Section 4, we illustrate the
new matrix-free LOBPCG eigensolver for Heisenberg spin chains
of sizes up to L = 26. Finally, the main conclusions are formulated
in Section 5.

2 PROBLEM FORMULATION
In this section we brie�y review the properties of the spin chain
model that most frequently is studied by numerical simulations of
MBL.

2.1 Heisenberg Spin Model
Weconsider the nearest-neighbor interactingHeisenberg spinmodel
with random on-site �elds:

H =
∑
〈i , j 〉

®Si · ®Sj +
∑
i
hiS

z
i , (1)

where the angle brackets denote nearest-neighbor i and j, hi is
sampled from a uniform distribution [−w,w] withw ∈ R+0 , and

®Si · ®Sj = Sxi S
x
j + S

y
i S

y
j + S

z
i S

z
j ,

where Sαi =
1
2σ

α
i , with σαi the Pauli matrices operating on lat-

tice site i and α ∈ {x,y, z}. The parameterw is called the disorder
strength, and is responsible for inducing the MBL transition. The
values hi are sampled randomly each time the Hamiltonian is in-
stantiated, and the relevant physics lies in the statistical behavior
of the set of all such Hamiltonians. The individual Hamiltonians H
with independently sampled hi are called disorder realizations.

Note that in (1) each term of each sum has an implied tensor
product with the identity on all the sites not explicitly written.
Consequently, the Hamiltonian for L spins is a symmetric matrix
of dimension N = 2L and exhibits the following tensor product
structure

H =
L−1∑
i=1

I ⊗ · · · ⊗ I ⊗ Hi ,i+1 ⊗ I ⊗ · · · ⊗ I

+

L∑
i=1

I ⊗ · · · ⊗ I ⊗ hiS
z
i ⊗ I ⊗ · · · ⊗ I ,

where Hi ,i+1 = Sxi S
x
i+1 + S

y
i S

y
i+1 + S

z
i S

z
i+1 is a 4-by-4 real matrix

and I is the 2-by-2 identity matrix. Remark that by de�nition, all
matrices Hi ,i+1 are the same and independent of the site i . For our
experiments, we use open boundary conditions, meaning that the
nearest-neighbor terms do not wrap around at the end of the spin
chain. Open boundary conditions can be considered to yield a larger
e�ective system size because of the reduced connectivity.

The state of each spin is described by a vector in C2, and the con-
�guration of the entire L-spin system can be described by a vector
on the tensor product space (C2)⊗L . In this speci�c case, however,
the Hamiltonian’s matrix elements happen to all be real, so we do
not include an imaginary part in any of our computations. Further-
more, our Hamiltonian commutes with the total magnetization in
the z direction, Sz =

∑L
i=1 S

z
i . Thus it can be block-diagonalized

in sectors characterized by Sz ∈ [−L/2,−L/2 + 1, . . . , L/2 − 1, L/2].
The vector space corresponding to each sector has dimension n =( L
Sz+L/2

)
such that the largest sector’s dimension is n = L!

(L/2)!(L/2)! ,
and this corresponds to the actual dimension of the matrices on
which we operate, see Table 1. While these subspaces are smaller
than the full space, their size still grows exponentially with the
number of spins L. Thus, the problem becomes di�cult rapidly as
L increases. Furthermore, the density of eigenvalues in the middle
of the spectrum increases exponentially with L. Thus the tolerance
used to solve for these internal eigenvalues must be made tighter
rapidly as L increases.

2.2 Metrics for Localization
With the problem’s matrix clearly de�ned, we now need a way
of quantifying localization from the eigenvalues and eigenvectors.
There are multiple quantities that can be used for this purpose. We
focus on two here: one based on the eigenvalues, and one on the
eigenvectors. The eigenvalue-based method (adjacent gap ratio)
has been used in multiple previous works [5, 11, 16, 23], but su�ers
from large statistical noise and thus requires many samples to be
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usable. To reduce the number of samples required, we focus on the
eigenvector-based method in our experiments.

2.2.1 Adjacent Gap Ratio. Random matrix theory informs us that
the statistical distribution of eigenvalues will di�er between local-
izing and thermalizing Hamiltonians [16]. In particular, we expect
eigenvalues of a thermal Hamiltonian to repel each other, i.e., hy-
bridization of eigenvectors prevents them from generally coming
too close to one another. The eigenvalues of a localized Hamilton-
ian should not display this behavior: we expect them to be Poisson
distributed. Therefore, we can measure localization by comparing
the relative size of gaps between the eigenvalues. Thermal Hamilto-
nians will generally have more consistently sized gaps due to level
repulsion.

The adjacent gap ratio is de�ned as follows

ri =
min(∆i ,∆i+1)
max(∆i ,∆i+1)

, ∆i = λi − λi−1,

where the eigenvalues λi are sorted in increasing order. Quanti-
tatively, random matrix theory can inform the precise values we
expect in the two cases, averaged over many pairs of neighboring
eigenvalues. In the thermal case, we expect 〈r 〉 ∼ 0.53, while for
localizing Hamiltonians we expect 〈r 〉 ∼ 0.39 [16].

2.2.2 Eigenstate Entanglement Entropy. The eigenvectors of the
Hamiltonian can also help inform us about localization. In a ther-
mal system, we expect quantum entanglement to be widespread,
while in a localized system, the entanglement is not expected to
be extensive. This idea can be quanti�ed by choosing a cut which
divides the spin chain into two pieces, and measuring the entan-
glement across it. In practice, this entanglement is measured by
removing one of the two pieces (by computing a partial trace), and
then measuring the increase in entropy due to its removal.

Mathematically, for an eigenvector x , the entanglement entropy
between two subsystems A and B can be computed as follows.
De�ne ρ ≡ xx> as the density matrix corresponding to the state
x , represented as a column vector. Now let ρA ≡ TrB [ρ] be the
density matrix of subsystem A, where TrB is the partial trace over
sites in subsystem B. The entanglement entropy is then

SAB = −Tr [ρA ln ρA] .

Numerically, this quantity is generally computed in the following
way: (i) compute ρA directly from x , (ii) compute the eigenvalues λi
of ρA, and (iii) compute SAB = −

∑
i λi log λi . Note that in the �rst

step, we do not hold ρ itself at any point since it is a dense matrix
of dimension n × n, and thus is not feasible to store in memory.
Fortunately, it is not hard to compute the partial trace directly from
x itself.

In this paper, we focus on the case in which we cut exactly in
the middle of the spin chain, such that subsystems A and B are the
left and right halves of the system. In this case, for eigenvectors
corresponding to eigenvalues near 0, we expect the thermal case to
have entanglement entropy [17]

SL/2 =
L ln 2
2 − 0.5 (2)

In the localized case the entanglement entropy will not scale with
L, but instead will attain some constant value. For �nite system

sizes, we simply expect the entanglement entropy to decrease from
the above value as the system becomes more localized.

Not only the value of the entropy changes during the localiza-
tion transition: the statistics change as well. When compared across
disorder realizations, the thermal entanglement entropy should
consistently be the value in Equation (2), and thus have small vari-
ance. During the transition, however, we expect the entanglement
entropy to depend strongly on the speci�c disorder realization and
thus the statistic will have a large variance. Empirically, examining
the variance of the entanglement entropy is one of the best ways
to identify the localization transition.

2.3 Multiple Levels of Concurrency
The MBL study allows for at least 4 levels of concurrency. The �rst
level corresponds to the need of averaging over (many) di�erent and
independently sampled disorder realizations in order to obtain rele-
vant statistical behavior. Since the disorder strength is responsible
for inducing the MBL transition, we also have to vary the disorder
strength, giving rise to the second level of concurrency. The third
level corresponds to the eigenvalue chunks, i.e., for each (large)
eigenvalue problem, originating from one disorder realization and
a particular disorder strength, we have to compute eigenvalues
from di�erent regions of the spectrum and their corresponding
eigenvectors.

All previous levels of concurrency are completely independent
and can be implemented in a massively parallel fashion by making
use of iterative eigensolvers. The next level of parallelism takes
place within these eigensolvers. Although most iterative eigen-
solvers follow a rather sequential procedure, each of the di�erent
steps within one iteration can be implemented in parallel.

3 MATRIX-FREE LOBPCG EIGENSOLVER
The Locally Optimal Block Preconditioned Conjugate Gradient
(LOBPCG) algorithm [8, 12] is a widely used eigensolver for comput-
ing the smallest or largest eigenvalues and corresponding eigenvec-
tors of large-scale symmetric matrices. Key features of the LOBPCG
algorithm are: (i) It is matrix-free, i.e., the solver does not require
storing the coe�cient matrix explicitly. It access the matrix by only
evaluating matrix-vector products; (ii) It is a block method, which
allows for e�cient matrix-matrix operations on modern comput-
ing architectures; (iii) It can take advantage of preconditioning, in
contrast to, for example, the Lanczos algorithm.

In Section 3.1 we review the LOBPCG algorithm. Next, we discuss
in Section 3.2 how the LOBPCG algorithm can be modi�ed in order
to compute interior eigenvalues and its corresponding eigenvectors.
Finally, we explain in Section 3.3 how the (block) matrix-vector
products can be e�ciently implemented in parallel, both in OpenMP
and MPI.

3.1 LOBPCG Eigensolver
Let H ∈ Rn×n be a symmetric matrix and denote its eigenval-
ues and corresponding eigenvectors by λ1 ≤ λ2 ≤ · · · ≤ λn and
x1, x2, . . . , xn , respectively. Then the diagonal matrix of the �rst
k ≤ n eigenvalues Λ = diag(λ1, λ2, . . . , λk ) and the rectangular tall-
skiny matrix of corresponding eigenvectors X = [x1, x2, . . . , xk ]
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satisfy the following eigenvalue problem

HX = XΛ

and X is the solution to the trace minimization problem

min
X>X=I

trace
(
X>HX

)
. (3)

A similar trace maximization property exists for the eigenvectors
corresponding to the k largest eigenvalues of H .

The basic idea of the LOBPCG method introduced by Knyazev
[12] is to solve this trace optimization problem only locally in every
iteration, in order to converge to the smallest (or largest) eigen-
values and corresponding eigenvectors. This yields the following
updating formula

Xi+1 = argX ∈Z min
X>X=I

trace
(
X>HX

)
,

where
Z = span {Wi ,Xi ,Xi−1} ,

with Xi and Xi−1 the current and previous iterates, respectively,
andWi the preconditioned residual

Wi = K−1 (HXi − XiΘi ) ,

with K any preconditioner and Θi = X>i HXi ∈ R
k×k . Note thatWi

corresponds to the preconditioned gradient of the Lagrangian

L(X ,Λ) =
1
2 trace

(
X>HX

)
−
1
2 trace

(
X>XΛ − Λ

)
associated to (3) and evaluated at (Xi ,Θi ).

The approximations to the smallest k eigenvalues and eigenvec-
tors, so called Ritz pairs (λ̃j , x̃ j ), can numerically be obtained from
the Rayleigh–Ritz method, i.e.,

ΘiV = V Λ̃,

where Λ̃ = diag(λ̃1, λ̃2, . . . , λ̃k ) is a diagonal matrix containing the
Ritz values on its diagonal and V = [v1,v2, . . . ,vk ]. The corre-
sponding Ritz vectors are given by x̃ j = Xivj , for j = 1, 2, . . . ,k .

A basic version of the LOBPCG method, given in Algorithm 1, is
relatively easy to implement, however, it can su�er from numerical
instability if not implemented carefully. Therefore we used the
robust variant, introduced in [8], in all our experiments.

3.2 Computing Interior Eigenvalues
The LOBPCG algorithm has several advantages, such as blocking
and preconditioning, compared to the Lanczos algorithm. However,
the standard LOBPCG algorithm, as well as the standard Lanczos
algorithm, only allow for computing the lower or upper part of the
spectrum.

Within the Lanczos algorithm this issue is solved by a shift-and-
invert transformation

(H − σ I )−1,

where σ ∈ R is the shift. This spectral transformation maps the
eigenvalues closest to the shift σ to the outer part of the trans-
formed spectrum which then can be e�ciently computed by the
shift-and-invert Lanczos algorithm. The big downside of this trans-
formation is that it requires a memory demanding LU factorization
for inverting the shifted matrix. This makes it impractical for large
numbers of spins. As reported in [19], the computational cost of

Algorithm 1: Basic LOBPCG algorithm

Input : number of eigenpairs k and block size b ≥ k

X0 ∈ Rn×b : matrix of starting vectors with
X>0 X0 = I

Output : X ∈ Rn×k : matrix of approximate eigenvectors
Λ ∈ Rk×k : diagonal matrix of approx. eigenvalues

1 Residual: R = HX0 − X0(X>0 HX0).
2 Initialize: X = X0, P = [], and nc = 0.
while nc < k do

3 Apply preconditioner:W = K−1R.
4 Subspace: Z = [W ,X , P].
5 Rayleigh–Ritz:

(Z>HZ )


V1
V2
V3

 =

V1
V2
V3

 Λ
6 Update: X ←WV1 + XV2 + PV3 and P ←WV1 + PV3.
7 Residual: R = HX − XΛ.
8 Update number of converged eigenpairs nc .
end

9 Return �rst k columns of X and leading k × k block of Λ.

the overall algorithm is dominated by the construction of the LU
factorization.

In order to avoid storing the matrix and computing memory de-
manding LU factorizations, we will make use of a di�erent spectral
transformation, the so called spectral fold [24]

(H − σ I )2,

where σ ∈ R is again the shift. This transformation maps all eigen-
values to the positive real axis and the ones closest to the shift
σ to the lower edge close to 0. Hence, we can use the LOBPCG
eigensolver in combination with matrix-free block matrix-vector
operations in order to compute interior eigenvalues and their corre-
sponding eigenvectors. Because the transformed eigenvalue prob-
lem

(H − σ I )2x = λx

is symmetric positive de�nite, we will use a diagonal (Jacobi) pre-
conditioned conjugate gradient (PCG) method as preconditioner
for the LOBPCG eigensolver, so that we again can make use of
matrix-free block matrix-vector operations.

3.3 Matrix-Free Matrix-Vector Product
In contrast to the shift-and-invert Lanczos algorithm, where the
dominant computational cost is the construction of the LU factor-
ization, the dominant computational cost of the LOBPCG algorithm
is the (block) matrix-vector product. Note also that by applying a
spectral fold transformation, the matrix-vector product of the trans-
formed matrix can be implemented simply by repeatedly applying
a standard matrix-vector product of our Hamiltonian.

In order to implement this matrix-vector (MATVEC) operation
matrix-free and e�ciently, we must consider our choice of basis
states, as well as our ordering of these states in the vector. We use
two di�erent orderings, one for the pure OpenMP and the other
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(a) OpenMP state ordering (b) MPI state ordering

Figure 1: The sparsity structure of the L = 10Hamiltonian using (a) the OpenMP state ordering and (b) the MPI state ordering.

for the hybrid MPI–OpenMP implementation. They are chosen to
optimize for SIMD vectorization and communication bandwidth
respectively. To conserve memory, we compute all o�-diagonal
matrix elements on the �y, avoiding explicitly storing them.

3.3.1 Basis States. A convenient basis for the Hamiltonian is theZ -
polarized product state basis: the states in which every spin is in aZ -
eigenstate. These states can be represented compactly as a bitstring,
with zeros representing the spin-up state and ones representing
the spin-down state (or vice versa). This representation, which is
also used in [10], allows fast computation of the values of matrix
elements via bitwise operations. For example, the value of the term∑
〈i , j 〉 S

z
i S

z
j can be computed in just a couple of operations:

inline double ZZ(int state, int L) {
// number of terms in the sum that are -0.25
int n_negative = __builtin_popcount(state ^ (state>>1));
return 0.25*(L - 2*n_negative - 1);

}

3.3.2 Data Layout of Block Vectors. LOBPCG is a block solver,
meaning that it operates on a block of several vectors at the same
time, usually 32 or 64 in our case. A crucial performance considera-
tion is how this data should be stored. When viewing this block as
a tall, skinny dense matrix, there are two obvious possibilities: row-
or column-major. Other possibilities such as Z Morton ordering
exist, but there is no clear reason that they would give performance
gains in this context.

Both intuitively and empirically, we �nd that row-major order-
ing yields a faster matrix-vector multiplication than column-major
does. From a data-locality perspective this makes sense [20]. When

we are performing the multiplication for a particular matrix ele-
ment, in the row-major case the sequence of relevant values in
the input vector block are contiguous in memory, meaning that
they can all be fetched in the same cache line. Furthermore, the
multiplication can be vectorized with SIMD instructions. In the
column-major case, those same vector values are spread out in
memory by a distance equal to the vector length, and must be
accessed separately. Furthermore, there is danger of concurrency
issues with false sharing in the column-major case. In particular,
if threads are each given a unique set of matrix rows to compute,
they will never write to the exact same places in the output vector.
However, in the column-major case two threads are more likely
to write to nearby locations in memory. If these nearby locations
are on the same cache line, serious performance degradation can
result.

3.3.3 OpenMP MATVEC. This single-node, pure OpenMP imple-
mentation targets the Intel Knight’s Landing architecture speci�-
cally, with the following aspects of the hardware in mind: (i) large
number of threads and hyper-threading, (ii) very fast MCDRAM
used in cache mode, and (iii) 512-bit SIMD vector units. In order
to optimally use these features, an ordering of states was chosen
in which the o�-diagonal matrix elements form a series of diago-
nal bands, see Figure 1(a). The state ordering that produces these
diagonal bands is simple: the states are simply sorted lexicograph-
ically, or equivalently, sorted by their values when the bitstrings
are interpreted as integers. Iteration along these bands is very fast
because the same operation is being applied repeatedly to neighbor-
ing data values. This makes data access patterns easily predictable
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for the prefetcher, and also allows easy vectorization with SIMD
instructions.

Generally, when computing the o�-diagonal elements, a given
row index is converted to its corresponding state bitstring, that
bitstring is manipulated to yield a new state bitstring, and that
new state is converted back into a (column) index. That conversion
from state back to index can cause performance issues. In general
it can be performed in O(logn) time using binary search, but that
can become a large overhead since it needs to be performed for
every matrix element that is computed. Instead, we compute the
di�erence between the row and column indices directly, using the
state. Recall that the only o�-diagonal elements are �ip-�op terms,
which exchange two neighboring spins but do not a�ect any other
part of the state. Consider a row corresponding to a state

xL−1 · · · xi+2, 0, 1, xi−1 · · · x0,

where x j represents the con�guration of spin j . It will have a matrix
element connecting it with the column corresponding to the state

xL−1 · · · xi+2, 1, 0, xi−1 · · · x0.

It can be shown that in a lexicographical ordering, the di�erence in
indices between these two states is ∆ =

( i∑i−1
i=0 xi

)
, where

(n
k
)
is the

binomial coe�cient function.
In order to optimize for the prefetcher and for vectorization, we

would like to operate on many sequential values in memory, which
this reordering allows us to do. However, we would also like to
compute all of the matrix elements for a single row of the matrix
at the same time, in order to optimize for temporal locality of write
operations to the same location in the output vector, such that the
data can be stored in the cache in between writes. We can optimally
balance these needs by iterating across small blocks of rows, of a
size that corresponds to the L1 cache size. This allows us to iterate
e�ciently along each of the sequential elements in a particular
block while not losing relevant data from the cache. Each OpenMP
thread owns a unique set of rows of the matrix, corresponding to
several of these blocks, and thus there is no concern about race
conditions or need for atomic operations.

3.3.4 MPI–OpenMP MATVEC. For the hybrid MPI–OpenMP im-
plementation, we use one MPI rank per node, and OpenMP for
on-node parallelism. In this case, communication bandwidth is lim-
iting for anything more than a few MPI ranks. Thus, we choose a
state ordering that minimizes the amount of data that needs to be
communicated. To do so, we employ a breadth-�rst-search based
ordering strategy, that is reminiscent of Cuthill–McKee reordering
[6]. We begin with some initial state, and perform a breadth-�rst
search (BFS) through the graph corresponding to the Hamiltonian,
recording basis states as we encounter them. Due to the structure of
the Hamiltonian, this ordering greatly reduces the bandwidth of the
matrix, as can be seen in Figure 1(b). This narrow bandwidth allows
communication with only neighboring ranks in a linear topology,
for up to ∼50 nodes.

This reordering does not permit the fast direct calculation of
di�erences between indices that was used in the pure OpenMP ver-
sion, though that same method could be used along with a lookup
table. While this is ostensibly concerning, the index lookup time is

ultimately irrelevant because it only a�ects the speed of the compu-
tational portion of the matrix-vector multiply. The communication
is the dominant cost and the communication and computation are
overlapped, so there is no overhead from a slightly slower compu-
tational portion.

4 NUMERICAL EXPERIMENTS
All numerical experiments were performed on the NERSC super
computer called Cori which has 2 di�erent types of compute nodes:
• Intel Xeon “Haswell” compute nodes @2.3GHz, 2x16 cores
and each 2 hyper-threads, 128GB DDR4 RAM.
• Intel Xeon Phi “Knights Landing” (KNL) compute nodes
@1.4GHz, 68 cores and each with 4 hyper-threads, 96GB
DDR4 RAM, 16GB MCDRAM.

4.1 OpenMP MATVEC
The full OpenMP, single node implementation was used to solve
instances of the problem up to L = 24 spins. In this range of system
sizes the required memory can easily �t on a single node, and even
fully in the MCDRAM of a single KNL node, see Table 1.

Figure 2 shows the parallel speedup of the block MATVEC with
block size 32 on both a Haswell and KNL node. The speedup is
calculated as the ratio of running the OpenMPMATVEC code using
the full number of available threads including hyper-threading, 64
threads and 272 threads, respectively, and using only a single thread.
As can be seen in this �gure, the implementation makes full use of
the many-core architecture of the KNL nodes. At smaller system
sizes, there is not quite enough work for each core to do to allow
full utilization, but as the system size grows, all of the physical
cores become well-utilized.

16 18 20 21 22 23 24 25 26
0

8

16

24

32
nb physical cores

Haswell

Spin chain length L

MATVEC OpenMP parallel speedup

0

16

32

48

68

KNL

Figure 2: OpenMP parallel speedup for Haswell and KNL of
the block MATVEC with block size 32. The vertical axes cor-
respond to the speedup obtained when running using the
full number of available threads,when compared to running
with only a single thread on the same hardware.
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From a priori estimation and empirical evidence, it is clear that
memory bandwidth is the limiting factor for the pure OpenMP
matrix-vector multiplication. We hypothesize that competition for
memory bandwidth is what prevents the Haswell nodes from e�-
ciently using all the cores. On the Haswell nodes the 32 cores are
split into two 16-core sockets, with each socket having four DIMMs.
This means that four cores are using each DIMM concurrently, and
it seems that the DRAM simply can’t supply data fast enough to
keep the CPUs saturated.

On KNL, however, the (more numerous) cores have both a lower
individual clock rate and access to extremely fast 16GB of MC-
DRAM with 460GB/s total bandwidth. Our results show that this
hardware, along with the matrix-vector multiplication designed
for e�cient vectorization, is able to keep all 68 cores supplied with
data. In Figure 2 we also note that the speedup is actually slightly
higher than the number of physical cores. We hypothesize that this
is due to L1 and L2 cache e�ects, i.e., with less work per core in the
parallel case, it is more likely that requested memory location will
already be in the cache. Hence, for the remainder of the paper we
will use the KNL compute nodes for all numerical experiments.

4.2 MPI–OpenMP MATVEC
For the hybrid MPI–OpenMP, we have implemented 3 di�erent
communication mechanisms: blocking using MPI_Send/Recv, non-
blocking using MPI_Isend/Irecv, and one-sided remote memory
access (rma) using MPI_Put. For the former ones we have also
implemented 2 variants: one with and one without overlapping
communication and local computation. The overlapping is achieved
by explicitly allocating one OpenMP thread to the MPI calls, while
the other threads perform the matrix-vector multiplication on the
local matrix elements.

The results from a strong scaling experiment for all di�erent
variants of the MPI–OpenMP MATVEC with L = 26 and block
size 64 are shown in Figure 3. The top �gures clearly indicate
that in this hybrid MPI-OpenMP case, the e�ciency of the matrix-
vector product is ultimately limited by communication bandwidth
since overlapping communication and local computation yields a
reduction of the wall time by 18% up to 36% in this case.

In Figure 3 we also note that the di�erent communication mech-
anism result in very similar timing results. This is probably due
to the predictable nature of the communication, i.e., neighboring
nodes only and at predictable times. Overall the non-blocking
MPI_Isend/Irecv implementation was found to be the most per-
formant.

4.3 Eigenstate Entanglement Entropy
Using the pure OpenMP implementation up to system sizes of
L = 24, we present preliminary data on the entanglement entropy
for the localization transition. The performance data for these runs
is given in Table 2.

For each disorder realization, 16 eigenpairs with eigenvalues
nearest zero were computed, and the half-chain entanglement en-
tropy was computed for each eigenvector. As is described in Sec-
tion 2.2.2, the entropy in the thermal case in this regime is expected
to scale linearly with L, with a constant correction of −0.5. To thus
normalize the entropy across di�erent system sizes we de�ned a
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Figure 3: Strong scaling of theL = 26MPI–OpenMPMATVEC
and block size 64 with blocking, non-blocking, and rmaMPI
communication.
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Disorder strength w

Mean scaled entropy of eigenstates

Figure 4: The scaled half-chain entanglement entropy as a
function of disorder strength.

scaled entropy simply as

S̃ =
SL/2 + 1/2

L
.

In Figure 4, we plot the results of our computations of this scaled
entropy. In general, we expect the scaled entropy to attain a value
of ln 2 in the thermal state for all system sizes, and then to decrease
as the system becomes localized. This corresponds with what we
see in our results, up to some small negative corrections at low
system sizes, which were also seen in [19], though that paper used
a slightly di�erent metric.

When plotting the variance of the entanglement entropy in Fig-
ure 5, we see a clear description of the transition. At low disorder,
every system size shows an exponential increase towards the tran-
sition, manifested as a line in the log-scaled variance plot. This
exponential growth starts surprisingly early, and the slope of the
growth in log scale, and thus the factor in the exponent, is consis-
tent across system sizes. This can be interpreted as a consistent
exponential approach to the transition, with the larger system sizes

Table 2: Runtime to solve for the 16 eigenpairs with eigen-
values nearest to 0. Runs used a single KNL node with the
full OpenMP solver implementation.

L LOBPCG tolerance Mean wall time

12 10−5 0.6 s
14 10−5 1.4 s
16 10−5 4.5 s
18 10−5 30.7 s
20 10−5 4.7min
22 10−5 1.0 h
22 10−6 1.2 h
24 10−6 16.6 h

Disorder strength w

Variance of half-chain entanglement entropy (log scale)

Figure 5: The variance of the half-chain entanglement en-
tropy as a function of disorder strength.

simply starting at smaller values, with the starting value changing
by a constant factor with each increase in system size.

After this exponential growth, we see the curves peak, at a point
which can be interpreted as the center of the transition. Our three
largest system sizes qualitatively converge on a consistent point for
this peak. With data for larger system sizes, we hope to be able to
resolve this point precisely. A clear next step is to run full disorder
averaging at a full set of disorder points for L = 24 and beyond.
Timing results for L = 26 are given in Table 3. At these system sizes,
the exponential growth region should converge with the observed
peak, yielding insight into precisely where the transition occurs.

Another next step is to do this same analysis but further away
from the middle of the spectrum. Since our solver is faster in that
region where the eigenvalues are less dense, as reported in Table 3,
we should be able to observe the transition behavior at larger sys-
tem sizes. Such a speedup is not possible with the shift-and-invert

Table 3: Timing results for computing 32 eigenpairs of L = 26
Hamiltonians as a function of the normalized shift ε . Runs
used 32 KNL nodes and LOBPCG with block size 64, toler-
ance 10−6, and preconditioned with PCG.

ε LOBPCG iter PCG iter time [h]
0.1 18 200 0.15
0.2 11 5,000 2.36
0.3 33 10,000 13.94
0.4 32 20,000 26.05
0.5 30 20,000 24.84
0.6 32 20,000 26.05
0.7 36 10,000 15.36
0.8 10 5,000 2.09
0.9 14 200 0.12
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Lanczos algorithm, whose memory usage is ignorant to the value
of the shift applied.

5 CONCLUSIONS
We have introduced a new approach to study many-body localiza-
tion, which requires computing many eigenvalues and correspond-
ing eigenvectors of large Hamiltonians in di�erent regions of the
spectrum. Our approach uses the LOBPCG algorithm, in combina-
tion with an e�cient and matrix-free implementation of the block
matrix-vector multiplication on many-core architectures to com-
pute the desired eigenvalues and eigenvectors. Such an approach
allows us to overcome the memory bottleneck in the previously
used shift-and-invert Lanczos algorithm. As a result, the total mem-
ory footprint is reduced by several orders of magnitude, which
allows us to compute eigenpairs of spin chains with up to L = 24
on a single compute node. We have also developed an hybrid MPI–
OpenMP version of the solver that can be run on several nodes.
Because, the MBL study requires solving eigenvalue problems for
many instances of Hamiltonians with random disorder terms, and
computing eigenvalues from di�erent regions of the spectrum, the
overall computation can scale to hundreds of thousands of compu-
tational cores.
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