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The Z2 × Z2 symmetry-protected topological (SPT) phase hosts a robust boundary qubit at zero
temperature. At finite energy density, the SPT phase is destroyed and bulk observables equilibrate in
finite time. Nevertheless, we predict parametric regimes in which the boundary qubit survives to
arbitrarily high temperature, with an exponentially longer coherence time than that of the thermal bulk
degrees of freedom. In a dual picture, the persistence of the qubit stems from the inability of the bulk to
absorb the virtual Z2 × Z2 domain walls emitted by the edge during the relaxation process. We confirm
the long coherence times via exact diagonalization and connect it to the presence of a pair of conjugate
almost strong zero modes. Our results provide a route to experimentally construct long-lived coherent
boundary qubits at infinite temperature in disorder-free systems. To this end, we propose and analyze an
implementation using a Rydberg optical-tweezer array and demonstrate that the difference between
edge- and bulk-spin autocorrelators can be distinguished on timescales significantly shorter than the
typical coherence time.
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The primary signature of symmetry-protected topo-
logical (SPT) order is the presence of robust boundary
degrees of freedom at zero temperature [1–8]. At finite
temperature, these boundary modes interact strongly
with thermal excitations in the bulk and rapidly
decohere. Recent progress on understanding many-body
localized (MBL) states of matter [9,10] has yielded the
insight that such edge modes can be stabilized at finite
temperature via strong quenched disorder [11–14]. In
this case, the disorder serves to localize bulk thermal
excitations, preventing them from scattering with and
decohering the boundary mode. While intriguing, the
requirement of strong disorder complicates prospects for
realizing such MBL SPT phases in experiments [15–19]
and also weakens the distinguishing feature of the
decoupled boundary mode, since bulk transport is also
arrested.
In this Letter, we describe how the boundary and bulk

degrees of freedom in a translationally invariant system
can decouple parametrically, even at infinite temperature.
This separation of edge and bulk dynamics stems from the
inability of the edge to resonantly absorb or emit bulk
excitations. We exploit this dynamical protection to
construct a coherent edge qubit in a one-dimensional
spin chain without disorder.
In particular, we show that the ZXZ or “cluster” model

[20–22] defined on an open one-dimensional chain with
L ¼ 2M sites as

HSPT ¼ λ1
XM−2

j¼1

σz2jσ
x
2jþ1σ

z
2jþ2 þ λ2

XM−3

j¼1

σz2jþ1σ
x
2jþ2σ

z
2jþ3

þ Γ
XL
j¼1

σxj þ Γ2

XL−1
j¼1

σxjσ
x
jþ1 ð1Þ

can support a coherent edge qubit at any temperature,
as long as it is dimerized with λ1 ≠ λ2. The presence of
this qubit owes to the existence of two long-lived,
conjugate boundary modes, the usual example of which
are fσzedge; σxedgeg (Fig. 1). Crucially, the dimerization
breaks the Z2 swap symmetry between even and odd
spins, but keeps the Z2 × Z2 symmetry of the SPT
phase intact. Finally, we propose an experimental
realization of the model in a 1D Rydberg tweezer array
and describe how the coherence of the edge qubit can be
directly probed.
Edge decoupling of a classical bit.—Before discussing

the emergence of an edge qubit, we provide some intuition
for the edge-decoupling mechanism [23,24]. This mecha-
nism can already be illustrated for the classical edge
polarization of a quantum transverse-field Ising chain. In
particular, consider the Hamiltonian

HIsing ¼ −J
XL−1
j¼1

σzjσ
z
jþ1 − Γ

XL−1
j¼1

σxj − J2
XL−2
j¼1

σzjσ
z
jþ2; ð2Þ
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where σx=z are Pauli operators. It is well known that the
ground state of this system (for small enough Γ) is ferro-
magnetic. Dynamically, this is captured by the autocorrela-
tion of the bulk magnetization, hσzðtÞσzð0ÞiT¼0 !t→∞

M2 ≠ 0.

At nonzero temperature, quantum dynamics cause
bulk observables to thermalize and such long-range order
is lost. In particular, hσzðtÞσzð0ÞiT decays as ∼e−t=τbulk with
a timescale τbulk ∼ 1=Γ due to the propagation of bulk
domain walls. Surprisingly, even at infinite temperature in
this interacting model, the edge magnetization σz1 (and σzL)
can decay significantly more slowly [23,24]. For Γ; J2 ≪ J,
hσz1ðtÞσz1ð0Þi ∼ e−t=τedge with

1

τedge
∼ Γ

�
Γ
J

�
cJ=J2

; ð3Þ

as can be seen over 2 orders of magnitude in Fig. 2.
To understand the enhanced stability of the edge mag-

netization, consider the excited states of the chain in terms
of domain walls in the σz configuration. For J2 ¼ Γ ¼ 0,
domain walls cost energy 2J. If the edge-spin σz1 flips, it
changes the number of domain walls by �1 and the energy
by �2J. In the bulk, turning on a perturbative transverse-
field Γ can only change the number of domain walls by
0;�2. Thus, all finite-order perturbative processes (in Γ)
which depolarize σz1 are off resonant by at least ΔE ¼ �2J
and the edge magnetization cannot decay (τedge → ∞).
At finite J2, the domain walls interact: Any pair of

domain walls gains energy 2J2 when they are neighbors.
Thus, it is possible to compensate the energy ∼2J of an
extra domain wall by rearranging of order n ∼ J=J2 domain
walls to sit next to one another. Using this as the leading-
order on-shell process produces the exponential prethermal
timescale of Eq. (3).
The edge-magnetization σz1 in the Ising model thus

constitutes a long-lived classical bit at the boundary—it

resists depolarization from bulk dynamics even at high
temperature. However, it is not a long-lived quantum bit,
which can be in a superposition of states, and thus must also
resist “dephasing.” Any local operator conjugate to σz1 (e.g.,
σx1 or σ

y
1) creates domain walls whose propagation leads to

decay on a timescale Oð1=ΓÞ; see Fig. 1(c).
Edge decoupling of a quantum bit.—Having developed

intuition for the long-lived classical polarization, we turn to
the edge qubit in theZ2 × Z2 SPT phase [25]. For this qubit
to remain coherent at high temperatures, the pair of con-
jugate boundary modes corresponding to σz and σx must be
long-lived. The simplest way to achieve this would be to
generalize the “domain-wall absorption arguments” to each
conjugate edge mode of the Z2 × Z2 SPT. Unfortunately,
there is a complication: In the transverse-field Ising model,
there is only a single type of domain wall, whereas in aZ2 ×
Z2 SPT, there are multiple types of excitations, leading to
many more channels for depolarization and dephasing.
The excitation structure of the Z2 × Z2 SPT is easily

understood under duality [26,28]. The ZXZ Hamiltonian
Eq. (1) is dual to two coupled transverse-field Ising
chains (on the odd and even sites, respectively): H0

SPT ¼
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P
M−2
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P
M
j¼1 σ

x
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Γ
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j¼1 σx2jþ1 þ Γ2

P
L−1
i¼1 σxi σ

x
iþ1. When λi are the domi-

nant couplings, the SPT phase transforms to the global
Z2 × Z2 symmetry-broken phase of the coupled Ising
chains. There is an additional Z2 “swap” symmetry when
λ1 ¼ λ2, which arises from exchanging the two Ising
chains. Excitations of the original SPT correspond to
different types of bulk domain walls in the dual sym-
metry-broken model. When the two chains are decoupled
(Γ2 ¼ 0), their respective edge spins σz1 and σ

z
2 are protected

from depolarization; however, these operators are not
mutually conjugate. But the operator σz2

Q
M
i¼1 σ

x
2i−1 is

conjugate to σz1, and it is long-lived, because the product
over σx2i−1 is simply the global spin-flip symmetry Go on

(a)
(c) (d) (e)

(b)

FIG. 1. (a) Schematic illustration of a one-dimensional Rydberg optical-tweezer array which hosts a coherent edge qubit even at
infinite temperature. (b) Comparison of edge-mode behavior at zero and infinite temperature in each of the models discussed in the main
text. (c)–(e) The autocorrelator of the edge-spin operators at infinite temperature from exact diagonalization for (c) the transverse-field
Ising chain of Eq. (2) with J2 ¼ Γ ¼ 0.25J, compared with (d) the ZXZ chain of Eq. (1) with Γ ¼ Γ2 ¼ 0.05, λ1 ¼ λ2 ¼ 1, and (e) the
dimerized ZXZ chain with λ2 ¼ 0.6, for system size L ¼ 14.
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odd sites. Under duality, the corresponding long-lived
conjugate operators in the SPT are localized on the edge:

ZXZ Ising × Ising

Σx ¼ σx1σ
z
2 ⟷ σz2Go;

Σy ¼ σy1σ
z
2 ⟷ iσz1σ

z
2Go;

Σz ¼ σz1 ⟷ σz1:

ð4Þ

For decoupled transverse-field Ising chains, the depo-
larization of the edge requires the emission or absorption of
a domain wall, which is an off-resonant process. However,
if the chains are coupled, the interaction Γ2 between them
can depolarize the edge spins by transforming one type of
domain wall into the other. In particular, if λ1 ¼ λ2 then
there are different types of domain walls with the same
energy, and the edge spin can immediately relax via on-
shell domain-wall conversion. A similar physical argument
explains the lack of a long-lived edge mode in the Potts
model [29,30].
As an explicit example of this domain-wall conversion

process, consider the following two configurations of spins
at the edge of the coupled Ising chains:

↑↓↓↓ � � � ↓↓↓↓ � � �

⟹
Γ2σ

x
1
σx
2

↓↓↓↓ � � � ↑↓↓↓ � � � :
Here, the upper (lower) row depicts the odd (even) spins.
On the left, there is a single broken Ising bond on the upper
chain. The Γ2 term can hop the broken bond from the upper
chain to the lower, flipping both edge spins. When λ1 ¼ λ2,
there is no difference in energy between these two
configurations due to the Z2 swap symmetry. Thus, the
protection of the edge spin fails at leading order in
perturbation theory, and it quickly depolarizes [Fig. 1(d)].
This suggests that a natural way to restore the edge-spin

lifetime is to dimerize the SPTwith λ1 ≠ λ2, which prevents
the direct resonant conversion of one domain-wall type to

another. Consequently, the autocorrelation times of all the
conjugate edge-mode operators Σα are exponentially long
at infinite temperature, as can be seen in Fig. 1(e), in stark
contrast with the transverse-field Ising chain, where only σz1
has a long autocorrelation time [Fig. 1(c)]. In the language
of quantum information, this means that both depolariza-
tion and dephasing are strongly suppressed and the edge
mode constitutes a coherent qubit.
Interpretation via strong zero modes.—The long-lived

edge qubit arises from two almost strong edge zero modes
(SZMs), which exhibit significant overlap with Σα. We
briefly summarize the properties of exact and almost SZMs
[23,24,31,32]. An exact SZM is an operator which is
localized at the edge of the system and commutes with
the Hamiltonian up to terms exponentially small in system
size. An example is the Majorana zero mode at the edge of
the Kitaev chain [33,34].
Such SZMs can be constructed order by order in

perturbation theory. For systems with exact SZMs, the
perturbative construction converges exponentially and need
only be cut off at finite size. In systems with almost SZMs,
the same construction produces asymptotic series which
must be cut off at some finite order, beyond which the
magnitude of the commutator withH increases. This cutoff
produces the observed lifetimes in, e.g., Fig. 2(a). These
lifetimes are calculated numerically from the time taken for
the autocorrelation to reduce by a factor of e.
Returning to the ZXZ model, we attempt to construct

two conjugate SZMs by double expansion in Γ and Γ2,

starting from the zeroth-order terms: Ψð0Þ
z ¼ Σz and

Ψð0Þ
x ¼ Σx. We have explicitly constructed these up to

fourth order. We emphasize that the existence of two such
conjugate SZMs on a single boundary is highly nontrivial
and does not occur in either the transverse-field Ising model
or the Kitaev chain considered previously [23,24]. Without
them, we cannot locally encode an edge qubit [35].
The first-order terms are

Ψð1Þ
z ¼ Γ
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x
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3 þ
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x ¼ Γ
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3 þ
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5−2
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λ2

σy1σ
y
4σ

z
5

�
:

This expression provides insight into the need for
dimerization: For jλ1j ¼ jλ2j, the expansion breaks down
at first order, since Ψð1Þ diverges. This leads to a simple
prediction: The autocorrelation times of Σz and Σx should
exhibit a dramatic reduction [compared to Fig. 1(e)] when
jλ1j=jλ2j ¼ 1. This is borne out by our numerics; see Fig. 3.

(a)
(b)

FIG. 2. The depolarization time T1 of the classical edge bit of
the Ising chain Eq. (2). (a) In finite-size chains, T1 is limited by
perturbative processes which flip the spin at opposite ends of the
chain. Thus, T1 increases exponentially with L until it saturates to
its infinite-volume limit. (b) The saturated T1 follows the
exponential form ecJ=J2 as predicted by Eq. (3).
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More generally, poles in the SZM expansion correspond
to physical resonances where the lifetimes becomes short.
These can correspond to complicated physical processes.

For example, there is an additional pole in Ψð1Þ
x at 2jλ1j ¼

jλ2j but not in Ψð1Þ
z . This corresponds to the large dip in the

coherence time of Σx around λ1 ¼ λ2=2 in Fig. 3.
Physically, a broken bond on the edge of the lower chain
can hop into the bulk of the upper chain, creating two
broken bonds. This process does not change the energy if
λ1 ¼ λ2=2. However, if a broken bond is on the edge of the
upper chain, the Γ2 coupling can only move it to the edge of
the lower chain, so there is no corresponding dip in the
coherence time of Σz.
At second order in the SZM expansion, further poles

appear at jλ1j=jλ2j ¼ 1⁄3; 2 for Σz, and at ½, for Σx, the
effects of which are visible in Fig. 3. In general, suppose
jλ1j=jλ2j ¼ p=q for integers p and q without common
prime factors. There is a resonance if the change in energy
from flipping an edge spin under the diagonal part of the
Hamiltonian (Γ ¼ Γ2 ¼ 0) can be matched by flipping bulk
spins. In the case of coupled Ising chains, the dangerous
processes involve flipping either edge spin, individually or
together. Let us factor the change in energy due to flipping
a spin at site j as 2λ1Δj=p. At the edge, Δ1 ¼ �p and
Δ2 ¼ �q. In the bulk, the sum of Δj for j > 2 is an
arbitrary linear combination of 2p and 2q, which has even
parity. Thus, when p is even, the edge-spin flip cost Δ1 can
be canceled by the sum of bulk flips Δj, and Σz has a
resonance. On the other hand, p even forces q odd, so Σx

does not have a resonance. If q is even instead, the reverse
is true. When p and q are odd, the cost of flipping both
edge spins Δ1 þ Δ2 is even, so both edge operators suffer a
resonance at the same order.

This analysis shows that there are no divergence-free,
rational jλ1j=jλ2j for both conjugate edge operators.
Nevertheless, for large p and q, the resonances only occur
at high orders in perturbation theory, and the coherence
time is significantly enhanced, as emphasized in Fig. 3.
One might be tempted to bypass resonances by choosing
incommensurate λ1 and λ2, where there are formal results
on bulk prethermal behavior [36]. However, the poles due
to nearby resonances always produce large coefficients in
the SZM expansion at sufficiently high order. Physically,
the linewidth of the high-order resonances, clear in Fig. 3,
may be interpreted in terms of the energy uncertainty of the
domain walls involved in the processes that flip the edge
spin [23].
Experimental realization.—A direct experimental reali-

zation of our proposal can be implemented in a 1D optical-
tweezer array (Fig. 1) of single alkali or alkaline-earth
atoms [37–41]. Such systems have emerged as powerful
platforms for building up many-body quantum systems
atom by atom. Here, we envision the effective spin degree
of freedom in Eq. (1) to be formed by two hyperfine atomic
ground states. The most natural Hamiltonian in such
systems is a long-range transverse-field Ising model, with
power-law interactions decaying as 1=r6. The physics
underlying the SZM is robust to the presence of long-
range interactions, a feature we explore in detail in the
Supplemental Material [26]; we note that this contrasts with
the Floquet SPT MBL-based strategy for realizing an
infinite-temperature edge qubit previously proposed [42].
Since the power-law tail does not qualitatively change the
system’s behavior, here, we neglect it for simplicity and
consider the Hamiltonian H¼P

N
i¼1hiσ

x
i þ

P
N−1
i¼1 λiσ

z
iσ

z
iþ1.

The Ising interaction is generated by dressing the ground
hyperfine state with an excited Rydberg state using a far-
detuned laser [43–47]; the resulting Rydberg blockade
induces strong effective spin-spin interactions with a range
on the order of a few microns [48]. The transverse field is
implemented by resonant Raman coupling. Finally, by
using techniques from Floquet engineering, it is possible
to realize the dimerized ZXZ Hamiltonian stroboscopically
[42,49]. By periodically modulating the Ising coupling as
ω cosðωtÞλiσziσziþ1 [50], one generates (at leading order in a
Floquet-Magnus expansion) dynamics that are governed by
an effective Floquet Hamiltonian [42]:

HF ¼
XN
i¼1

hiaðλ1; λ2Þσxi −
XN−1

i¼2

hibðλ1; λ2Þσzi−1σxi σziþ1; ð5Þ

where aðλ1; λ2Þ ¼ 1
2
½J0ð2ðλ1 − λ2ÞÞ þ J0ð2ðλ1 þ λ2ÞÞ�,

bðλ1; λ2Þ ¼ J0ð2ðλ1 − λ2ÞÞ − aðλ1; λ2Þ, and J0ðxÞ is a
Bessel function of the first kind [42,51]. Dimerization of
the transverse-field hi is inherited by the ZXZ coupling in
the Floquet Hamiltonian.

FIG. 3. The decay times T1 and T�
2 of the autocorrelators of the

conjugate edge-operators Σz and Σx for the ZXZ model, Eq. (1),
using exact diagonalization at infinite temperature with
Γ ¼ Γ2 ¼ 0.05. The lifetimes increase exponentially with system
size until they saturate due to nearby resonances at rational λ1=λ2.
The λ1 ¼ λ2 resonance is first order, and thus, the edge-operators’
lifetime is not enhanced.
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The relatively large interatom spacing of a typical
Rydberg tweezer array enables experiments to probe the
long lifetime associated with our proposed edge qubit. As a
concrete protocol, (1) initialize the Rydberg spin chain in a
randomly oriented product state (i.e., effectively at infinite
temperature), (2) projectively initialize the edge qubit by
measuring Σz, (3) evolve the system for time t, and
(4) measure Σz again to obtain the correlation function
hΣzðtÞΣzð0Þi after averaging over multiple runs. The decay
of the hΣzðtÞΣzð0Þi correlator measures the lifetime of z
polarization. To demonstrate a coherent quantum bit, one
must perform the same procedure for Σx. In the language of
atomic spectroscopy, this is analogous to performing a
Ramsey sequence to probe the dephasing time T�

2 of the
qubit, while the Σz autocorrelator probes the depolarization
time T1.
To ensure that there are parameters for the Floquet

Hamiltonian Eq. (5) that realize a dimerized ZXZ model
with long edge coherence, we have numerically simulated
the Floquet Hamiltonian for an L ¼ 14 spin chain [26]. In
addition to demonstrating that our proposal works for a
broad range of parameters, our numerics indicate that the
difference between edge- and bulk-spin autocorrelators
can be distinguished on timescales much shorter than
the typical lifetime of the Rydberg-dressed state [52].
Moreover, previous work on the transverse-field Ising
model has also found that the enhancement of the edge
depolarization time (compared to the bulk) can survive
external noise, a feature we expect to extend to the
boundary qubit in the cluster model [32].
Our work opens the door to a number of intriguing future

directions. First, by exploring other symmetry regimes,
higher spatial dimensions, and models with unbounded
local Hilbert spaces, it may be possible to extend our
mechanism for edge-mode stability to more generic settings
[53,54]. Second, while we have focused on an experi-
mental proposal based on Floquet engineering, it would be
interesting to investigate the prethermal dynamics of a
coupled 1D Rydberg ladder; this geometry exhibits the
same symmetries as the ZXZ model and thus might provide
a simpler route to realizing symmetry-enhanced edge
modes. Finally, building on techniques developed in the
context of many-body localized SPT phases [14,55], it
would be interesting to explore hybrid quantum-informa-
tion protocols where symmetry-enhanced edge qubits play
the role of robust quantum memories.
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Note added.—A similar model withZ2 × Z2 SPTorder was
considered by Parker et al. [56]; however, they focus on the
effects of the SPT phase on a single SZM in a nearby
proximate symmetry-broken phase, rather than considering
the conjugate edge modes in the SPT itself.
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