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We demonstrate that the prethermal regime of periodically driven (Floquet), classical many-body
systems can host nonequilibrium phases of matter. In particular, we show that there exists an effective
Hamiltonian that captures the dynamics of ensembles of classical trajectories despite the breakdown of this
description at the single trajectory level. In addition, we prove that the effective Hamiltonian can host
emergent symmetries protected by the discrete time-translation symmetry of the drive. The spontaneous
breaking of such an emergent symmetry leads to a subharmonic response, characteristic of time crystalline
order, that survives to exponentially late times in the frequency of the drive. To this end, we numerically
demonstrate the existence of classical prethermal time crystals in systems with different dimensionalities
and ranges of interaction. Extensions to higher order and fractional time crystals are also discussed.
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Many-body Floquet systems can host a variety of
intrinsically nonequilibrium phases of matter [1–8]. One
of the central challenges in stabilizing such phases is the
presence of Floquet heating—a generic interacting system
will absorb energy from the driving field until it approaches
a featureless, infinite temperature state [9–13]. In quantum
systems, strong disorder can induce many-body localiza-
tion that prevents Floquet heating and enables the system to
remain in a nonequilibrium steady state until arbitrarily late
times [13–16]. Since localization relies upon the discrete-
ness of energy levels, this specific approach is intrinsically
quantum mechanical and naturally begs the following
question: To what extent do Floquet nonequilibrium phases
require either quantum mechanics or disorder [17–25]?
An elegant but partial answer to this question is provided

within the framework of Floquet prethermalization in
disorder-free systems [26–39]. When the driving frequency,
ω, is larger than the system’s local energy scale, Jlocal,
Floquet heating is suppressed until exponentially late times,
τheat ∼ eω=Jlocal . In particular, directly absorbing energy from
the drive is highly off-resonant, and heating only occurs
via higher order processes that involve multiple, correlated
local rearrangements. This simple physical intuition holds
for both quantum and classical systems.
In the quantum setting, Floquet prethermalization has

an additional feature: There exists an effective Hamiltonian
that accurately captures the dynamics of the system until
τheat. Whenever the periodic drive induces an emergent
symmetry in this effective Hamiltonian, novel nonequili-
brium prethermal phases of matter, such as discrete time
crystals or Floquet symmetry-protected topological phases,
can emerge [1–8,39–47]. Whether analogous phases
are also possible in classical many-body systems is sig-
nificantly more subtle; in particular, although classical

prethermalization features slow Floquet heating, there is
no effective Hamiltonian that accurately captures the
prethermal dynamics [36].
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FIG. 1. (a) Schematic depicting trajectories in a classical phase
space. The exact Floquet trajectory (blue) diverges from the approxi-
mate trajectoryunder theeffectiveHamiltonian(green).However, the
exactevolutionofa finiteregion inphasespaceiswell-capturedbythe
effective Hamiltonian. (b) The dynamics of themagnetization differ-
ence,δMðtÞ,andtheenergydensity,D=N, forasingleinitialstatewith
N ¼ 104. Solid lines depict approximate evolution under D for all
times.Dashed lines indicate approximate evolutionunderD for short
times (t≤1=J), followed by exact Floquet evolution. Agreement
between solid anddashedcurveshighlights the role of classical chaos
in thegrowth of errors.While errors in local observables [i.e., δMðtÞ]
accumulate rapidly, theenergydensity remainsconservedthroughout
the dynamics. (c) The prethermal dynamics of an ensemble of initial
states quickly converge with increasing frequency. Before Floquet
heating brings the system to infinite temperature, the magnetization
approaches the value associated with the corresponding prethermal
ensemble ofD (blue dashed line, computed via Monte Carlo [48]).
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In this Letter, we show that the lack of an effective
Hamiltonian does not preclude the existence of novel,
nonequilibrium phases in classical Floquet systems; we
highlight this by explicitly constructing a classical pre-
thermal discrete time crystal (CPDTC). Our main results
are threefold. First, we demonstrate that the inability of an
effective Hamiltonian to generate the Floquet dynamics is a
direct consequence of classical chaos—small errors at early
times lead to exponentially diverging single trajectories.
This connection to chaos suggests that one should forgo the
focus on individual trajectories and rather ask whether there
is an effective Hamiltonian that captures the prethermal
dynamics of an ensemble of trajectories (Fig. 1). We show
that this is indeed the case. Second, we prove that, much
like the quantum case, the effective Hamiltonian can host
an emergent symmetry that is protected by the discrete time
translation symmetry of the periodic drive. Finally, we
propose, analyze, and numerically simulate a variety of
different classical prethermal time crystals in one and two
dimensions.
Prethermalization in classical dynamics.—Consider a

classical Floquet Hamiltonian, HFðtÞ ¼ HFðtþ TÞ, with
period T ¼ 2π=ω. For ω ≫ Jlocal, one can construct a
perturbative expansion of the Floquet dynamics in powers
of Jlocal=ω [49]. In general, this Floquet-Magnus expansion
diverges, reflecting the many-body system’s late-time
approach to infinite temperature (via energy absorption from
the drive). However, when truncated at an appropriate order,
n� ∼ ω=Jlocal, the expansion defines a static Hamiltonian,D,
that remains quasiconserved for exponentially long times
(under the full Floquet dynamics) [27,29,36]:

1

N
jDðt ¼ mTÞ −Dðt ¼ 0Þj < mJlocal ·Oðe−ω=JlocalÞ; ð1Þ

where N is the system size and m ∈ N is the number of
Floquet cycles. To this end, Eq. (1) precisely formalizes the
existence of an intermediate, prethermal regime. In particu-
lar, for times t < τheat ∼Oðeω=JlocalÞ, the energy density of
the system (measured with respect toD) remains constant up
to ∼OðJlocalÞ.
Nevertheless, the question remains: Is D also the

effective prethermal Hamiltonian that generates the dynam-
ics before τheat? In the quantum setting, the answer is yes
[31,32,41,50]. However, in classical systems, D is only
proven to faithfully reproduce the Floquet evolution over a
single driving period [36]:

jOðTÞ −O0ðTÞj ≤ Oðe−ω=JlocalÞ: ð2Þ

Here, O is a generic local observable and OðTÞ represents
its evolution under the full Floquet Hamiltonian [i.e.,
HFðtÞ], while O0ðTÞ represents its evolution under D.
Naively, one might expect the single period errors in

Eq. (2) to accumulate additively as one evolves to later

times. However, this does not account for compounding
effects, where early-time errors propagate through the
many-body system and induce additional deviations. In
the quantum case, the existence of Lieb-Robinson bounds
constrains the propagation of errors and enables one to
prove that deviations grow algebraically in the number of
Floquet cycles: jOðmTÞ −O0ðmTÞj ≤ mpOðe−ω=JlocalÞ; this
immediately indicates that D is indeed the effective
prethermal Hamiltonian [30–33,41]. In contrast, classical
systems exhibit no such bounds—chaos causes the expo-
nential divergence of nearby trajectories, suggesting that
errors can in principle accumulate exponentially quickly.
To sharpen this intuition, we numerically explore the

Floquet dynamics of a generic classical spin model [51]:
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where S⃗i is a three-dimensional unit vector. Spin dynamics
are generated by Hamilton’s equations of motion _Sμi ¼
fSμi ; HðtÞg, using the Poisson bracket relation fSμi ; Sνjg ¼
δijϵ

μνρSρi . The classical dynamics of an observable O are

then given by OðtÞ ¼ T e
R

t

0
Lðt0Þdt0 ½O�, where the super-

operator L½·� is defined by L½·� ¼ f·; HFg [52]. At lowest
order in the Floquet-Magnus expansion, the static
Hamiltonian is given by

D ¼ 1
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To investigate the accumulation of errors, we compare
the dynamics of local observables evolving under HFðtÞ
and D in a one-dimensional spin chain ðN ¼ 104Þ with
nearest neighbor interactions [53]. Deviations from the
exact Floquet dynamics are measured by computing
the magnetization difference between the two trajectories:
δMðtÞ¼1−ð1=NÞPi S⃗iðtÞ · S⃗0iðtÞ. As depicted in Fig. 1(b)
(top panel), δMðtÞ quickly increases to a plateau value
consistent with the spins in the two trajectories being
completely uncorrelated; thus, D cannot be thought of as
the effective prethermal Hamiltonian for HFðtÞ. By con-
trast, the energy density remains conserved throughout the
time evolution [bottom panel, Fig. 1(b)], demonstrating
slow Floquet heating.
In order to pinpoint the role of chaos in the dynamics

of δMðtÞ, we consider a slightly modified trajectory; in
particular, starting with the same initial state, we first
evolve under D for a few Floquet cycles and then under
HFðtÞ for all subsequent times. Comparing to the exact
Floquet dynamics (i.e., evolution under HFðtÞ for all
times), this protocol only differs at very early times.
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Indeed, beyond an initial, exponentially small difference in
the trajectories [arising from Eq. (2)], any additional
deviation solely arises from the chaotic compounding of
errors. As depicted in Fig. 1(b) (dashed curves), the
magnetization difference between the modified trajectory
and that of the exact Floquet dynamics tracks δMðtÞ for all
times. Crucially, this agreement demonstrates that chaos
dominates the growth of δMðtÞ and prevents D from being
the effective prethermal Hamiltonian.
Prethermal dynamics of trajectory ensembles.—While

the evolution of a single trajectory cannot be captured by
an effective Hamiltonian, we conjecture that D captures
the dynamics of ensembles of trajectories [Fig. 1(a)]; by
considering an initial state composed of a region of phase
space (as opposed to a single point), the details of
individual chaotic trajectories become “averaged out.”
This conjecture is made up of two separate components:
(i) during the prethermal plateau, the system approaches
the canonical ensemble of D, and (ii) D accurately
captures the dynamics of observables as the system
evolves from local to global equilibrium. This last
component highlights the two stage approach to the
prethermal canonical ensemble. First, observables on
nearby sites approach the same value and the system
locally equilibrates (this occurs at time τlocal). Afterward,
the system becomes globally homogeneous as it
approaches global equilibrium at time τglobal.
To investigate these components, we implement the

following numerical experiment: Starting from an N ¼
100 spin chain, we construct an ensemble of initial states
with a domain wall in the energy density at the center of the
chain and study the Floquet dynamics of the local mag-
netization Szi and energy density D=N [Fig. 1(c)] [54].
Focusing on the late-time regime (but before Floquet

heating), we find that the magnetization on opposite sides
of the domain wall approaches the same prethermal
plateau [Fig. 1(c)]; this precisely corresponds to the global
equilibration of our spin chain. Crucially, the value of this
plateau quantitatively agrees with the mean magnetization
of the corresponding canonical ensemble ofD calculated at
the same energy density via Monte Carlo [Fig. 1(c)] [48].
Notably, we find agreement not only with the average value
but also with the entire distribution [48], thus verifying the
first component of the conjecture.
To investigate the second component, we time evolve the

same ensemble of initial states for different frequencies of
the drive [55]. So long as τheat ≫ τglobal, we find that the
dynamics of local observables rapidly converge as a
function of increasing frequency [Fig. 1(c)]. Since the
ω → ∞ limit of HFðtÞ precisely corresponds to Trotterized
evolution under D, the convergence observed in Fig. 1(c)
indicates that D is indeed the prethermal Hamiltonian for
trajectory ensembles. This is in stark contrast to the
dynamics of a single trajectory, where local observables
fail to converge with increasing frequency [48].

Interestingly, however, even for a single trajectory, the
Floquet dynamics of either spatially or temporally averaged
quantities are well captured by D. The intuition is simple:
by averaging over different times or different spatial
regions, a single trajectory effectively samples over an
ensemble of different configurations [Fig. 1(a)]. This
insight yields a particularly useful consequence, namely,
that the dynamics of a single trajectory already encode the
prethermal properties of the many-body system.
Prethermal dynamics with symmetry breaking.—

Throughout our previous discussions, energy conservation
is the only constraint that restricts the many-body dynamics
within phase space. However, symmetry breaking can lead
to additional constraints; for example, if D exhibits a
discrete symmetry and this symmetry is broken at low
energy densities, then phase space is naturally split into
multiple disjoint regions corresponding to different values
of the order parameter. As a result, the many-body
dynamics under D are restricted to one such region.
Floquet evolution complicates this story. In particular, one

might worry that the micromotion of the Floquet dynamics
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FIG. 2. (a) Dynamics of a classical prethermal time crystal in a
one-dimensional long-range interacting spin chain. At τglobal,
different sites exhibit the same magnetization, indicating equili-
bration. For an exponentially long intermediate time window,
τglobal < t < τmelt, the system oscillates between positive and
negative magnetization values for even (solid line) and odd
(dotted line) periods. This subharmonic response remains stable
until the energy density crosses εc and the CPDTC melts. (b),(c)
Prethermal dynamics of the spin chain for different frequencies ω
with either long-range, (b), or short-range, (c), interactions. For
long-range interactions, the lifetime of the CPDTC is exponen-
tially enhanced by increasing the frequency of the drive. For
short-range interactions, transient period doubling decays at a
frequency independent timescale, which is significantly shorter
than the Floquet heating time (bottom panel).
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could move the system between different symmetry-broken
regions of phase space. If this were the case, prethermal
symmetry-breaking phases would not be stable. Fortunately,
the ability of D to approximate the dynamics over a single
period [i.e., Eq. (2)], is sufficient to constrain the Floquet
evolution to a specific symmetry-broken region.
To see this, consider, for example, a system where D

exhibits a discrete Z2 symmetry and hosts a ferromagnetic
phase whose order parameter is given by the average
magnetization. When the energy density is below the
critical value, the magnetization of the system can either
be Szavg or −Szavg. Given energy conservation, under a single
period of evolution, the magnetization must remain the
same or change sign. However, Eq. (2) guarantees that the
time evolved magnetization density can change, at most, by
an exponentially small value in frequency. This ensures
that for sufficiently large driving frequencies, the magneti-
zation cannot change sign (i.e., move to the other
symmetry-broken region) and the prethermal ferromagnet
remains stable.
Crucially, symmetries ofD can have two different origins:

They can be directly inherited from HFðtÞ, or they can
emerge as a consequence of the time translation symmetry of
the drive [40,41]. In the latter case, this can give rise to
intrinsically nonequilibrium phases of matter. To date, the
study of such nonequilibrium prethermal phases has been
restricted to quantum systems [39,56–63], where one can
explicitly prove their stability [40,41]. Here, we generalize
and extend this analysis to classical many-body spin systems
by taking the large-S limit of the quantum dynamics [36,48].
Consider a Floquet Hamiltonian that is the sum of

two terms, HFðtÞ ¼ HXðtÞ þH0ðtÞ. During a single

driving period, HXðtÞ generates a global rotation X½·� ¼
T e

R
T

0
f·;HXðtÞgdt such that the system returns to itself afterM

periods (i.e., XM½·� ¼ I½·�, where I is the identity map).
H0ðtÞ captures the remaining interactions in the system
[52]. For sufficiently large frequencies, the single period
dynamics (in a slightly rotated frame) are accurately
captured by X∘eTf·;Dg, where D is obtained via a
Magnus expansion in the toggling frame [48]; this expan-
sion guarantees that the dynamics generated byD commute
with X and thus X generates a discrete ZM symmetry of the
effective Hamiltonian [40,41]. Indeed, at lowest order, D is
simply given by the time-independent terms of H0ðtÞ that
are invariant under the global rotation.
The resulting prethermal Floquet dynamics are most

transparent when analyzed at stroboscopic times t ¼ mT
in the toggling frame of the X rotations, wherein an
observable O becomes eOðmTÞ ¼ X−m½OðmTÞ�. In this
context, the dynamics of eO are simply generated by D,
i.e., eOðmTÞ ¼ emTf·;Dg½eOðt ¼ 0Þ�. Thus, if the emergent
ZM symmetry of D becomes spontaneously broken, the
system will equilibrate to a thermal ensemble of D with a
nonzero order parameter.

In the lab frame, the dynamics ofO are richer: The global
rotation changes the order parameter every period, only
returning to its original value after M periods. As a result,
the system exhibits a subharmonic response at frequencies
1=ðMTÞ [40,41]. This is precisely the definition of a
classical prethermal discrete time crystal.
Building a CPDTC.—Let us now consider the Floquet

Hamiltonian in Eq. (3) with an additional global π rotation
around the x̂ axis at the end of each driving period [64]. At
leading order, X corresponds to the global π rotation, while
D is given by the time averaged terms of HFðtÞ that remain
invariant under X (i.e., Eq. (4) with hy ¼ hz ¼ 0). To this
end, we will use the energy density D=N and the average
magnetization Szavg to diagnose the prethermal dynamics
and the CPDTC phase.
Let us begin by considering a one-dimensional system

with long-range interactions Ji;jz ¼Jzji−jj−α; when α ≤ 2,
D exhibits ferromagnetic order below a critical temperature
(or, equivalently, a critical energy density εc that can be
determined via Monte Carlo calculations) [65,66]. Taking
α ¼ 1.8 and N ¼ 320, we compute the Floquet dynamics
starting from an ensemble with energy below εc [Fig. 2(a)]
[67]. After the initial equilibration to the prethermal state
(t≳ τglobal), the magnetization becomes homogeneous
across the entire chain, signaling equilibration with respect
to D [68]. Crucially, as depicted in Fig. 2(a), throughout
this prethermal regime, the magnetization exhibits robust
period doubling, taking on positive values at even periods
and negative values at odd periods. This behavior remains
stable until the CPDTC eventually “melts” at an exponen-
tially late time, τmelt, when the energy density crosses the
critical value εc of the ferromagnetic transition of D
[Fig. 2(a)].
A few remarks are in order. First, because τheat is

significantly longer than the interaction timescale, the
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FIG. 3. Prethermal dynamics of a nearest-neighbor interacting
classical spin model on the square lattice. (a) For a low-energy-
density initial state, the system exhibits robust period doubling
until exponentially late times. (b) For a high-energy-density
initial state, the magnetization decays to zero rapidly, well before
the Floquet heating time. This highlights the presence of a critical
energy density and the importance of symmetry breaking for the
existence of a CPDTC.
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system evolves between different thermal states of D as it
absorbs energy from the drive. Second, the lifetime of the
CPDTC is controlled by the Floquet heating rate and thus
the frequency of the drive. Indeed, by increasing ω, the
lifetime of the CPDTC is exponentially enhanced, while the
global equilibration time remains constant [Fig. 2(b)] [48].
Third, we emphasize that the observed CPDTC is funda-
mentally distinct from period-doubling bifurcations in
classical dynamical maps (e.g., the logistic map) or the
subharmonic response of a parametrically driven nonlinear
oscillator [21,69–85]. In particular, it occurs in an isolated
many-body classical system with conservative dynamics.
Let us conclude by highlighting the central role of

spontaneous symmetry breaking in observing the
CPDTC. We do so by controlling the range of interactions,
the dimensionality, and the energy density of the initial
ensemble. To start, we consider the short-ranged version
(i.e., nearest neighbor interactions) of the 1D classical
spin chain discussed above. Without long-range inter-
actions, ferromagnetic order is unstable at any finite
temperature [86], and this immediately precludes the
existence of a CPDTC. This is indeed borne out by the
numerics [Fig. 2(c)]: We observe a fast, frequency-
independent decay of the magnetization to its infinite-
temperature value.
While nearest neighbor interactions cannot stabilize

ferromagnetism in 1D, they do so in higher dimension.
To this end, we explore the same Floquet model [i.e.,
Eq. (3)] on a two-dimensional square lattice. For suffi-
ciently low energy densities, the system equilibrates to a
CPDTC phase [Fig. 3(a)], while above the critical temper-
ature, the system equilibrates to a trivial phase [Fig. 3(b)].
We hasten to emphasize that our framework is not restricted
to the period-doubled (M ¼ 2) CPDTC and it immediately
ports over to more general notions of time crystalline
order, including both higher order (M > 2) and fractional
CPDTCs (see the Supplemental Material for additional
numerics) [24,48].
Our work opens the door to a number of intriguing

directions. First, it would be interesting to explore the
generalization of classical prethermal time crystals to quasi-
periodic driving [87]. Second, although we have presented
extensive numerical and analytic evidence for the presence
of an effective Hamiltonian (for trajectory ensembles),
sharpening our analysis into a proof would provide addi-
tional insights in the nature of many-body classical Floquet
systems.
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Note added.—During the completion of this work, we
became aware of complementary work exploring classical
prethermal phases of matter [88,89].
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