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Expanding and improving the repertoire of numerical methods for studying quantum lattice models is an
ongoing focus in many-body physics. While the density matrix renormalization group (DMRG) has been
established as a practically useful algorithm for finding the ground state in one-dimensional systems, a provably
efficient and accurate algorithm remained elusive until the introduction of the rigorous renormalization group
(RRG) by Landau et al. [Nat. Phys. 11, 566 (2015)]. In this paper, we study the accuracy and performance
of a numerical implementation of RRG at first-order phase transitions and in symmetry-protected topological
phases. Our study is motivated by the question of when RRG might provide a useful complement to the more
established DMRG technique. In particular, despite its general utility, DMRG can give unreliable results near
first-order phase transitions and in topological phases, since its local update procedure can fail to adequately
explore (near-)degenerate manifolds. The rigorous theoretical underpinnings of RRG, meanwhile, suggest that it
should not suffer from the same difficulties. We show this optimism is justified, and that RRG indeed determines
well-ordered, accurate energies even when DMRG does not. Moreover, our performance analysis indicates that in
certain circumstances seeding DMRG with states determined by coarse runs of RRG may provide an advantage
over simply performing DMRG.
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I. INTRODUCTION

Developing numerical methods for determining the ground
state of a quantum lattice model is a central and enduring chal-
lenge in condensed matter physics. For one-dimensional (1D)
systems, the density matrix renormalization group (DMRG)
[1] has been established as an efficient and practical algorithm
for studying large spin chains and even quasi-two-dimensional
systems [2–5] and quantum chemistry problems [6,7]. In its
modern formulation, DMRG is a variational algorithm in the
space of matrix product states (MPSs) that seeks to find the
global energy minimum via local updates to the MPS Ansatz
[8]. Empirically, DMRG succeeds in finding this minimum in
the vast majority of cases for which it is employed. However,
there is no proof that the algorithm converges to the true
ground state. In order to fill this theoretical gap, a novel algo-
rithm, termed the rigorous renormalization group (RRG), was
recently introduced and proven to be able to find the ground
state of gapped one-dimensional local Hamiltonians in a time
polynomial in the system size [9].

There are a number of profound conceptual differences
between RRG and DMRG, perhaps the most prominent being
that RRG is not variational. Instead of relying on energy
optimization, RRG makes use of an approximate ground-
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state projector (AGSP) [10], an operator constructed from the
Hamiltonian, which can be applied to an arbitrary subspace
of states to increase its overlap with a span of low-energy
states. Instead of attempting to determine a single low-energy
eigenstate, RRG utilizes the AGSP to construct an entire low-
energy subspace. RRG accomplishes this through a recursive
procedure: first, the AGSP is applied to local approximations
of the target subspace, increasing their accuracy, then these
subspaces are merged to provide a larger-scale approximation
[9,11]. Remarkably, the properties of the AGSP make it pos-
sible to perform this merge in a manner which does not grow
the subspace dimension but still improves the accuracy of the
approximation. At its core, RRG embodies a renormalization
procedure: local degrees of freedom are grouped together,
then refined into a composite degree of freedom at a larger
length scale.

In its original conception, the RRG algorithm contains
certain steps that are challenging to implement numerically
[9]; however, a slightly modified version has been studied by
Roberts et al. [11]. Their work provides a proof of principle
that RRG can be utilized as a numerical tool to compute low-
energy states of one-dimensional Hamiltonians. Interestingly,
for specifically chosen models, such as the Bravyi-Gosset
[12] and random XY model, RRG was even shown to outper-
form straightforward implementations of DMRG (although a
modification restores DMRG’s performance advantage for the
Bravyi-Gosset case [13]).
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FIG. 1. Comparison of energies and variances of the states found using RRG (D = 8) and DMRG for the different models (N = 32).
(a) Transverse field Ising model (s = 6): DMRG finds states out of order and misses some low-energy states entirely while RRG computes
the low-energy subspace reliably. (b) Tricritical Ising model (s = 6): For � just below the ferromagnet-paramagnet transition, DMRG misses
the ground state initially and converges to a paramagnetic state. (c) Anisotropic XXZ model (s = 6): DMRG misses some states in the
ferromagnetic phase; RRG is able to find the low-energy states in the gapless XY up to the critical point, where it has large error. (d) ZXZ + XX
model (s = 12): DMRG struggles to produce the entire ground-state manifold in the topological phase. (e) ZXZ + ZXXZ model (s = 12):
DMRG shows the same issues as in (d) in both topological phases. The energy variances of the DMRG states are very small in all models,
mostly around the singular value decomposition (SVD) cutoff (∼10−10), except in some excited states and the gapless phase of the XXZ
model. RRG states display higher variances (10−2-10−6) in all models.

These results raise a more general question: are there
generic physical scenarios that favor the use of RRG over
DMRG? An obvious weakness of DMRG is the fact that it
may converge to a local energy minimum in the MPS manifold
due to its variational nature and local optimization proce-
dure [14,15]. This constitutes a problem both at first-order
phase transitions (FOPTs) [16], where there exist states that
are close in energy with very different in global structure,
and in symmetry-protected topological (SPT) phases [17–22],
which can exhibit large ground-state degeneracies. Although
approaches to improve the ergodicity of DMRG [15,23,24]
and to find degenerate topological states [25] have been put
forward, there is still no guarantee that the algorithm con-
verges to the state closest to the ground state in the MPS
variational space.

By studying the behavior of RRG near FOPTs and in
SPT phases, we answer the above question in the affirmative:
RRG is indeed the more suitable algorithm than DMRG in

these scenarios, and consistently finds complete low-energy
subspaces when DMRG does not. However, we also find
the current implementation of RRG is significantly less per-
formant than DMRG, and discuss how to ameliorate this
shortcoming. Most promisingly, we show that an inexpen-
sive run of RRG may be used to seed DMRG, and thereby
guarantee that DMRG finds all targeted low-energy states. To
perform our studies, we compare the spectra determined by
RRG and DMRG for a variety of models (Table I) that span
the full landscape of one-dimensional spin chains. There are
a variety of implementations of DMRG; here, we compare
to the standard implementation provided by Ref. [26], which
performs a two-site update on an initial random product state
and includes density matrix corrections [23].

The specific models we consider are as follows. For first-
order transitions, we examine three ferromagnetic models: the
mixed field Ising model, the tricritical Ising model, and the
anisotropic XXZ model. These models allow us to compare

TABLE I. Overview of the model Hamiltonians we consider including the parameter ranges we study. FOPT denotes a first-order phase
transition.

Model Spin Hamiltonian Parameters Properties

Longitudinal Ising 1
2 −∑

σ zσ z + hxσ
x + hzσ

z hx = 0.2, hz = [−0.01, 0.01] FOPT ferro ↔ ferro
Tricritical Ising 1

∑ −SzSz − hxSx + �(Sz )2 hx = 0.2, � = [0.94, 0.98] FOPT ferro ↔ para
Anisotropic XXZ 1

∑
SxSx + SySy − JzSzSz + �(Sz )2 � = 0.1, Jz = [1.02, 1.08] FOPT ferro ↔ gapless

ZXZ + ZXXZ 1
2

∑
σ zσ xσ z + βσ zσ xσ xσ z + γ σ xσ x + δσ x γ = 0.2, δ = 0.1, β = [0.75, 1.35] different topological degeneracies

ZXZ + XX 1
2

∑
σ zσ xσ z + γ σ xσ x γ = [0, 1.5] topological ↔ anti-ferro
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RRG and DMRG performance across a rich variety of tran-
sitions: between ferromagnets, ferro- and paramagnets, and
gapless and gapped phases. For SPT phases, we study two
variants of the cluster model [27,28]: one with additional
antiferromagnetic coupling, and one with competing topolog-
ical terms. These models allow us to expand our comparison
to transitions between a Haldane chain [17,29] and an an-
tiferromagnet, and between a Haldane chain and a slightly
less conventional SPT phase combined with symmetry
breaking [30].

We now briefly summarize the organization of the paper.
In Sec. II, we give a concise review the structure of the RRG
algorithm. In Sec. III, we present the results for the different
models, and in Sec. IV we evaluate the performance and
resource needs of RRG. We end with a conclusion in Sec. V.

II. THE RRG ALGORITHM

Here, we give a short review of the RRG algorithm. For
a more thorough discussion see Refs. [9,11]. The RRG al-
gorithm relies crucially on an AGSP operator, A, which is
roughly characterized by the property that it has the same
eigenvectors as the Hamiltonian under study, H , and addi-
tionally has small eigenvalues for excited states of H (and
hence approximately projects onto the low-energy states).
There are a variety of ways to construct the AGSP, but a nu-
merically convenient technique is simply via imaginary time
evolution [31]:

A = exp [−τH]. (1)

With the AGSP in hand we can now describe the main body
of the algorithm. The lattice is initially divided into 2m < N
blocks, where N is the number of lattice sites (which we
also assume is a power of 2 for simplicity). For each block
n we construct a local Hamiltonian Hn consisting only of
terms in H that are supported entirely on that block. We then
diagonalize Hn and keep the s lowest eigenstates to form a
local approximation to the low-energy subspace.

To make use of the AGSP, we decompose A as a sum of
terms which can individually be factored as a tensor prod-
uct of terms acting to the left of n, on n, and to the right
of n, i.e., A = ∑

i

∑
j λiμi jLi

<nAi j
n Ri j

>n. This is accomplished
via two Schmidt decompositions, and the λi and μi j are the
resulting Schmidt values. We then take the Ai j

n corresponding
to the D2 largest λiμi j and apply these local operators to the s
local low-energy eigenstates. This results in a new low-energy
subspace supported on block n, now spanned by sD2 states
(some of which may be linearly dependent).

Finally, we merge the subspaces associated with blocks n
and n + 1 (n even). To do so, we first simply tensor product the
states supported on blocks n, n + 1 to form s2D4 states com-
prising a new two-block approximation for the low-energy
subspace. Then, we reduce the dimensionality of this subspace
by diagonalizing the local Hamiltonian Hn,n+1 (i.e., consisting
of terms from H supported only on these blocks), restricted
to the tensor product subspace. After this diagonalization, we
select the lowest s energy eigenstates and use these as the
new basis for the local approximation of the lower-energy
subspace.

After completing this procedure for all pairs (n, n + 1),
we are left with 2m−1 blocks each associated with an s-
dimensional low-energy subspace. Thus, we may repeat the
application of the AGSP and merging procedure to generate
successively larger approximations of the global low-energy
subspace. After m steps, the process terminates and we are
left with candidate eigenstates for the full system from the
final diagonalization.

We note that our implementation of RRG, which is based
on that of Ref. [11], features two important differences form
the version rigorously studied in Ref. [9]. First, rather than
using a Chebyshev polynomial of the Hamiltonian to build
the AGSP, we use Trotterized imaginary time evolution. Sec-
ond, instead of performing random sampling to reduce the
dimensionality of merged subspaces, we choose to keep a
few low-energy eigenstates of Hn,n+1. The motivation for and
consequences of these adjustments are discussed thoroughly
in Ref. [11]. Briefly, they make the algorithm easier to imple-
ment, and reduce constant factors in the runtime, at the cost of
foregoing theoretical guarantees on accuracy [11].

Finally, we remark that the RRG algorithm requires no
variational optimization, and no specific Ansatz for the form
of the eigenstates. It is thus not susceptible to becoming stuck
in suboptimal minima, and does not exclude any subsets of
Hilbert space by fiat. Relatedly, one trades RRG accuracy for
speed not by further restricting a variational manifold but in-
stead by adopting a coarser renormalization step. Specifically,
reducing s and D can vastly improve the speed (and reduce the
memory needs) of RRG at the cost of finding fewer, and more
inaccurate, states. We discuss this trade-off in more detail in
Appendix A, and focus on the qualitative, generic features
of RRG in the main text. Generally, we hold D fixed across
the models we investigate but let s vary between the models
because of the large variability in ground-state degeneracy
(e.g., s = 6 for the magnetic models while s = 12 for topo-
logical models in Fig. 1).

III. RESULTS

A. Mixed field Ising model

Let us begin by exploring the performance of RRG in the
context of a first-order phase transition within the mixed field
Ising model (Table I):

HIsing = −
∑

i

σ z
i σ z

i+1 + hxσ
x
i + hzσ

z
i . (2)

As demonstrated in Fig. 1(a), for |hx| < 1, this model un-
dergoes a first-order phase transition between a ↑-polarized
ground state and a ↓-polarized ground state as the hz field
is tuned. Intuitively, near the transition, DMRG can become
trapped locally optimizing a state of the incorrect polarization
[32]. A similar issue occurs for the excited states when DMRG
seeks to optimize a magnon with the wrong polarization
background. Of course, the DMRG energies can always be
sorted after they are determined, so the tendency of DMRG
to find states out of order may appear to be only a mild
inconvenience. However, this instability can lead to a more
serious issue: sometimes DMRG will skip a low-energy state
entirely and find an excited state instead. In the mixed field
Ising model, this is most clearly observed for hz ≈ −0.01
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TABLE II. Computational resource comparison of RRG (D = 8) and DMRG for the simulations shown in Fig. 1. We report memory usage
in megabytes (MB).

RRG DMRG

Model Average time (s) Average memory (MB) Average time (s) Average memory (MB)

Longitudinal Ising 380 68 4 0.50
Tricritical Ising 13.5 × 103 570 24 0.76
Anisotropic XXZ 45.9 × 103 2.0 × 103 590 4.1
ZXZ + XX 25.9 × 103 1.6 × 103 3.7 × 103 9.9
ZXZ + ZXXZ 12.2 × 103 1.8 × 103 1.1 × 103 5.8

[Fig. 1(a)], where some low-lying excited states are missing
from the DMRG spectrum entirely.

RRG, in contrast, consistently finds all the low-energy
eigenstates (Fig. 1). This is not a trivial consequence of
the fact that RRG targets a subspace (and hence cannot
find energies out of order)—rather, it demonstrates that the
algorithm effectively combines locally nonoptimal (energet-
ically unfavorable) subspaces to build up a globally optimal
(low-energy) subspace. To be more concrete, RRG first ap-
proximates the global low-energy subspace as a tensor product
of local subspaces, each determined by diagonalizing a local
Hamiltonian (see Sec. II). As long as each local subspace is at
least two dimensional, it will include both ↑-polarized and ↓-
polarized states. Then, as these local subspaces are combined
and refined, eigenstates from both polarization sectors can be
included.

A first-order transition driven by a symmetry-breaking
term inherently challenges DMRG, since it ensures the exis-
tence of nearly degenerate states that are not locally related.
However, since the symmetry breaking is explicit in the
Hamiltonian, DMRG can always be seeded with a state from
the lower-energy broken-symmetry sector, e.g., with |↓ · · · ↓〉
for hz > 0 in this simple example. This motivates the exam-
ination of less contrived, and more interesting, models that
challenge the local optimization of DMRG while also exhibit-
ing ground-state order that cannot be straightforwardly read
from the Hamiltonian.

B. Tricritical Ising model

One such model is the tricritical Ising model, described by
the spin-1 Hamiltonian

Htric =
∑

i

−Sz
i Sz

i+1 − hxSz
i + �

(
Sz

i

)2
. (3)

Unlike the mixed field Ising model, the tricritical model ex-
hibits a first-order transition between fundamentally different
phases: ferromagnetic (|ms = ±1〉) at large � > 0, and para-
magnetic (|ms = 0〉) at small � > 0 (for small hx) [Fig. 1(b)].
Since the on-site (Sz )2 field always locally favors |ms = 0〉-
aligned spins, DMRG is typically biased, at least in its first
few sweeps, towards converging to the paramagnetic state.
As a result, DMRG often fails to find the true ferromag-
netic ground state near the transition, as evidenced by the
overshooting ground-state energy in Fig. 1. Even deep in the
ferromagnetic phase, DMRG often misses one of the pair of
degenerate ground states, finding an |ms = 0〉 polarized state
instead. Crucially, there is no obvious way to seed DMRG

to encourage it to find the correct ground state, without al-
ready knowing the location of the phase transition. Similarly,
without prior knowledge of the ground-state degeneracy, one
must check the symmetry properties of the states found by
DMRG to determine if it is missing representatives from the
low-energy manifold.

On the other hand, since RRG initially determines and then
merges local approximations of the low-energy subspace, it
is not inherently biased towards constructing para- or ferro-
magnetic states. Indeed, both para- and ferromagnetic states
will be maintained in local subspaces, allowing RRG to reli-
ably find the ground state(s) and the low-lying excited states
[Fig. 1(b)].

C. Anisotropic XXZ model

We can compare the behavior of RRG and DMRG for
another class of first-order transitions through the anisotropic
XXZ model, given by the spin-1 Hamiltonian

Hxxz =
∑

i

Sx
i Sx

i+1 + Sy
i Sy

i+1 − JzS
z
i Sz

i+1 + �
(
Sz

i

)2
. (4)

This model exhibits a variety of phase transitions, but here
we focus on the first-order transition between a gapless XY
phase at small Jz and ferromagnet at large Jz (both at small,
fixed � > 0). In the gapless phase, DMRG is able to ro-
bustly determine the low-energy spectrum using local updates,
since long-wavelength excitations can be decomposed into
a sequence of small local adjustments [Fig. 1(c)]. In the
ferromagnetic phase, however, the inconsistency of DMRG
resurfaces, and it often fails to find both degenerate ground
states [Fig. 1(c)]. This difficulty can again be attributed to
the on-site (Sz )2, which biases local updates against ferromag-
netic order.

On theoretical grounds, RRG is not expected to perform
well in gapless phases, since it is difficult to efficiently ap-
proximate the AGSP in this setting [33]. However, we observe
that in practice RRG effectively determines the low-energy
spectrum deep in the gapless XY phase [Fig. 1(c)]. This is
in contrast to the region near the transition, where RRG fails
to find the ferromagnetic ground states for Jz slightly larger
than the critical value, resulting in a jump in the spectrum
[Fig. 1(c)]. The precise reason for this difficulty remains a
topic for future research, but is presumably related to the
complexity of approximating the AGSP at the critical point.
Deep in the ferromagnetic phase, RRG recovers and reliably
finds all low-energy eigenstates [Fig. 1(c)] as in the tricritical
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TABLE III. Computational resource comparison of RRG (D = 4) and DMRG for the investigated models at N = 32, 64. DMRG
performance (N = 32) differs from Table II because s was also chosen to be smaller (see Figs. 4 and 5). We report memory usage in megabytes
(MB).

Model RRG (D = 4) DMRG

Average time (s) Average memory (MB) Average time (s) Average memory (MB)

N = 32
Longitudinal Ising 19 9.7 3 0.47
Tricritical Ising 927 98.0 19 0.72
Anisotropic XXZ 9.5 × 103 501 465 3.6
ZXZ + XX 9.1 × 103 471 1.8 × 103 6.8
ZXZ + ZXXZ 5.3 × 103 265 531 4.5

N = 64
Longitudinal Ising 757 110 6 0.53
Tricritical Ising 18.4 × 103 586 38 1.1
Anisotropic XXZ 120.7 × 103 1.2 × 103 714 5.4
ZXZ + XX 141.4 × 103 2.4 × 103 6.9 × 103 24.7
ZXZ + ZXXZ 83.2 × 103 1.4 × 103 1.4 × 103 10.3

and mixed field Ising models. This can again be attributed to
the fact that RRG keeps the degenerate low-energy eigenstates
on the local blocks which permit the construction of the full
global low-energy space upon subsequent merging.

D. ZXZ + XX model

We now turn to the topological phases and first consider
the cluster model with an additional antiferromagnetic term
described by the Hamiltonian

Htopo =
∑

i

σ z
i−1σ

x
i σ z

i+1 + γ σ x
i σ x

i+1. (5)

The topological part of this Hamiltonian (ZXZ) can be under-
stood through either the stabilizer formalism or via a Majorana
representation [30]. From either perspective, it can be seen
that the SPT ground state factorizes into a short-range entan-
gled bulk and two uncoupled edge spins as in the Affleck,
Kennedy, Lieb and Tasaki (AKLT) model model [34]. This
results in fourfold ground-state degeneracy corresponding to
the four possible edge-spin configurations: |↑↑〉, |↑↓〉, |↓↑〉,
and |↓↓〉 (Fig. 2). As γ is increased this system undergoes
a transition from this topological phase to an antiferromagnet,
with a concordant change to twofold ground-state degeneracy.

FIG. 2. Graphical representation of the ZXZ Hamiltonian. Each
spin is replaced by two Majorana modes and the black arrows depict
the coupling terms in the Hamiltonian. The modes γ 1

1 , γ 1
2 , γ 2

L−1, and
γ 2

L (highlighted in green) are uncoupled. These modes combine to
give uncoupled spin-1/2 degrees of freedom at each edge.

We note that in the topological phase, the entire ground-state
subspace can be generated from a common short-range entan-
gled bulk state plus local operations on edge spins.

Since there is no obstruction to changing the edge-spin
configuration during the DMRG optimization procedure, one
would expect DMRG to consistently find the entire ground-
state subspace in the topological phase. We observe, however,
that DMRG initialized with a random state often finds some
excited states before all four ground states, especially for γ <

0.5 as can be seen in Fig. 1(d). The reason for this behavior is
that DMRG introduces a bulk excitation as it orthogonalizes
the trial state against existing lower-energy states that have
already been found. This excitation is then never removed
and steers the algorithm towards a local minimum, an excited
state, to which it eventually converges.

For this model, the above problem can be conveniently
addressed by cycling the DMRG initial conditions through all
four edge-spin configurations. However, this solution may not
generalize to more complicated topological models, where the
degenerate subspace has a more complex structure.

Interestingly, DMRG does find both degenerate ground
states consistently on the antiferromagnetic side of the tran-
sition [Fig. 1(d)]; this is in contrast to the tricritical Ising and
anisotropic XXZ models, where it would often miss one of
the states in the pair. The differences in behavior here can be
explained by the fact that the ZXZ + XX model is spin- 1

2 and
necessarily lacks the on-site (σ z )2 term which biased DMRG
against establishing ferromagnetic order.

RRG again demonstrates no instability in determining the
eigenstates (Fig. 1) which reflects the fact that the cluster
Hamiltonian is indeed a model that is particularly well suited
for the algorithm. Models of this kind are frustration free, and
the exact ground state can be recovered by gluing together
locally optimized subspaces, meaning that the limit of γ = 0
would not even require the application of the AGSP. Here,
the correct ground state for a large system can be constructed
from superpositions of tensor products out of the states in
the ground-state manifold of smaller blocks. Our simulations
demonstrate that this behavior extends to nonzero γ and
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(a) (b) (c) (d) (e)

FIG. 3. Comparison of energies and variances of the states found using RRG (D = 4) and DMRG for the different models (N = 32).
(a) Transverse field Ising model (s = 5). (b) Tricritical Ising model (s = 5). (c) Anisotropic XXZ model (s = 5). (d) ZXZ + XX model
(s = 8). (e) ZXZ + ZXXZ model (s = 8).

should therefore hold for general models of bosonic SPTs in
one dimension.

E. ZXZ + ZXXZ model

We now consider a slightly more complicated topological
model that features a transition between the SPT phase above
and one with additional symmetry breaking (see Appendix C):

Htopo =
∑

i

σ zσ xσ z + βσ zσ xσ xσ z

+ γ σ xσ x + δσ x. (6)

In particular, we consider small, fixed γ and δ and vary
β ∈ [0.75, 1.35]. At small β, the ZXZ terms dominate and
the system is in the AKLT phase; for β � 1.1 the ZXXZ terms
gain the upper hand and the AKLT phase is replaced by a more
complicated Majorana chain structure. To gain some intuition
for this new phase, consider the limiting case of β → ∞.
In this limit, it is clear that the system decouples into three
Majorana chains, with three Majorana modes at each edge.
These new modes pair up to form additional physical degrees
of freedom, resulting in a ground-state degeneracy of 8 (see
Appendix C). Unlike in the AKLT phase, however, one of
these pairings is nonlocal: Majoranas from opposite edges
must be paired. (This can also be easily understood from the
stabilizer perspective, since ±ZZ · · · ZZ is a stabilizer of the
ground state.) In the spin language, the additional factor of
2 in the degeneracy is caused by symmetry breaking with
order parameter σ z

i−1σ
y
i σ z

i+1 which is present on top of the SPT
order [30].

Unlike the ZXZ + XX model, this Hamiltonian features
an on-site X field that allows the local update procedure of
DMRG to traverse all edge-spin configurations. Nonetheless,
in both topological phases, DMRG struggles to consistently
find all degenerate ground states [Fig. 1(e)]. Moreover, in the

ZXXZ phase, cycling through edge-spin initial conditions no
longer ensures DMRG will find the entire ground-state man-
ifold, since there is a third delocalized qubit contributing to
the degeneracy. In principle, this can be overcome by initial-
izing DMRG runs in different sectors of the broken symmetry
in addition to the edge-spin configurations, but the situation
demonstrates that the initializing procedure can become rather
involved in the presence of high ground-state degeneracy of
different physical origin.

RRG, on the other hand, consistently finds the complete
spectrum without any fine tuning of hyperparameters or initial
conditions (Fig. 1). The results on this model demonstrate
that RRG is also able to correctly determine the low-energy
subspace when the ground-state degeneracy is caused by a
combination of topology and symmetry breaking.

F. Seeding DMRG with RRG

Since DMRG can be applied to arbitrary initial states,
a natural question is whether it is possible to use RRG to
determine good input states for DMRG. This is especially rel-
evant in light of the fact (discussed in more detail below) that
current implementations of RRG are significantly slower than
DMRG. Therefore, one may hope to use a “cheap” initial run
of RRG (i.e., with low s, D) to find approximate eigenstates
that can then be further optimized by DMRG. The upshot of
this approach, compared to initializing DMRG with random
states, is that the seeding procedure encourages DMRG to find
all states of the low-energy eigenspace without missing any,
and in the correct order.

We investigate the utility of such a hybrid algorithm by
applying it to the topological models (ZXZ + ZXXZ and
ZXZ + XX ) discussed in the previous two sections. We
choose to focus on these models for two reasons: first, as
observed above, the large degeneracy of their low-energy
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(a)

(b)

FIG. 4. Comparison of DMRG energies given random initial
statues (upper panels) and given RRG (D = 4, s = 8) initial states
(lower panels). Seeding DMRG with states determined by RRG
ameliorates the instability in energy order.

manifolds makes it challenging for DMRG to find all ground
states consistently, making these models an ideal base case
for improving on DMRG; second, RRG performs especially
well on these models (see Tables II and III), making it plau-
sible to use a single run of RRG in place of several trials of
DMRG. As suggested above, we first perform relatively inex-
pensive RRG (D = 4), which is accurate enough to correctly
determine degeneracies but still has significantly large energy
errors (Fig. 3). We then refine these candidate eigenstates with
DMRG, increasing the accuracy of the energies. Compared
to DMRG with random initial states, the hybrid approach
demonstrates significantly improved stability, and does not
miss any degenerate states (see Fig. 4). This advantage persists
at larger systems size (N = 64), where randomly initialized
DMRG becomes even more unreliable, (Fig. 5).

It is also interesting to note that at larger system size,
the RRG energies are very inaccurate, exhibiting an energy
variance of ∼0.1. After performing DMRG, however, the
variances become similar to other DMRG runs (∼10−4). This
behavior demonstrates that RRG need not be too energetically
accurate to provide useful initial states for DMRG. It may
therefore be possible to alter the RRG algorithm, or run it at
exceedingly small s and D, and still benefit from stabilizing
DMRG when using its resulting states as input. Indeed, a
particularly promising application of RRG-seeded DMRG is
for generating the manifold of degenerate states of an intrinsic
topological phase using cylinder numerics [25,35–37]. Inves-

tigating this thoroughly for a range of models remains a topic
for future research.

IV. PERFORMANCE

Although RRG offers an advantage over DMRG in stability
and consistency, it comes at the cost of reduced performance
in terms of accuracy, time, and memory. To characterize the
accuracy of RRG and DMRG we consider the variances of
the approximate eigenstates, defined as σ 2

i = 〈ψi| H2 |ψi〉 −
(〈ψi| H |ψi〉)2. A true eigenstate would have zero variance,
and large variance indicates an inaccurate approximation.
The variances of the DMRG ground states are typically on
the order of the SVD truncation error (∼10−10), but can be
larger—particularly for excited states and in the gapless phase
of the anisotropic XXZ model (Fig. 1). The variances of
the RRG states range from 10−6 to 10−2, and vary signif-
icantly between models and even between phases within a
model. This variation is driven by how accurately the AGSP is
approximated globally by the Suzuki-Trotter decomposition,
and locally by the D2 largest Schmidt value operators. For
some applications, the variances of the RRG states may be
acceptable. Otherwise, the RRG states can be used as input
for further optimization by DMRG.

As can be seen in the resource summary table,
Table II, RRG requires significantly more time and memory
than DMRG to analyze the same models. However, setting
the large gap in performance aside, the RRG resource re-
quirements themselves provide insight into the strengths and
weaknesses of the algorithm. For example, RRG is slowest
and most memory intensive for the XXZ model, which is
naturally explained by the fact the its rigorous antecedent
has worse performance for gapless systems [33]. Conversely,
RRG performs relatively well on the topological models, and
is only ten times slower than DMRG for the ZXZ + XX (or
five times slower for the D = 4 RRG runs; see Table III).
This is a consequence of the fact that the RRG merging
procedure is optimal for frustration-free Hamiltonians, and
the advantage evidently carries over to only approximately
frustration-free models, or models belonging to the same
phase as a frustration-free fixed point.

We anticipate the implementation of RRG studied here
will be even more resource intensive in systems with periodic
boundary conditions (PBCs). This is for the simple reason that
when representing the AGSP as a (finite-size) PBC matrix
product operator (MPO), an additional long bond is needed
which increases the bond dimension χMPO → χ2

MPO; the same
applies to the resulting MPS [38]. Hence, to achieve similar
accuracy the AGSP truncation parameter D also needs to in-
crease, which then acutely raises the time and memory costs of
the algorithm. A more promising approach, and an interesting
direction for future research, would be to modify RRG to work
for truly periodic MPSs with implicit PBCs [39,40]. We note
here that reaching a completely translationally invariant MPS
would not be possible due to the hierarchical nature of the
algorithm. However, translational invariance could be used on
a single tree level so that the diagonalization of the effective
Hamiltonian and merge procedure need only be performed for
one or two segments, respectively. The PBC of the MPS would
considerably reduce the required bond dimension compared to
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(a) (b) (c) (d) (e)

FIG. 5. Comparison of energies and variances of the states found using RRG (D = 4) and DMRG for the different models (N = 64).
(a) Transverse field Ising model (s = 5). (b) Tricritical Ising model (s = 5). (c) Anisotropic XXZ model (s = 5). (d) ZXZ + XX model
(s = 8). (e) ZXZ + ZXXZ model (s = 8).

the long-bond approach. An alternative to PBC would be the
implementation of an infinite version of RRG in which the
segment grows until it has reached convergence akin to the
infinite DMRG [41].

V. CONCLUSION

Although DMRG is a powerful and flexible algorithm for
studying 1D quantum systems, it still has difficulty recovering
the low-energy spectra of models with degeneracy. For simple
models, this shortcoming can be overcome by careful initial-
ization based on physical intuition. In more complex systems,
however, such an a priori understanding may not be possible.
In these scenarios, RRG is an ideal tool due to its reliabil-
ity in finding low-energy eigenstates. We have demonstrated
this reliability in systems featuring first-order transitions and
topological phases. Moreover, the theoretical underpinning of
the algorithm suggests that this stability extends to many 1D
systems of interest. For example, while the proof of conver-
gence [9] and first numerical test [11] of RRG were based on
Hamiltonians with nearest-neighbor interactions, the success
of the method in the topological models demonstrates its
applicability to systems with longer-range couplings.

In accordance with Ref. [11], we find that the main draw-
back of RRG consists of the long runtimes. There are several
directions in which implementations of the algorithm can be
optimized. First, RRG performance—in terms of both accu-
racy and resources—is ultimately limited by how faithfully
the AGSP can be represented as an MPO of tractable dimen-
sion. It may therefore be possible to improve the numerical
implementation of RRG by adopting more sophisticated rou-
tines for approximating the AGSP, such as those outlined in
the original convergence proof [33]. This represents an inter-
esting future research direction for AGSPs and their tensor
network representation in general. Second, the RRG algorithm

hosts great potential for parallelization. Within a tree level, the
expansion of the subspace in one merge step and the compu-
tation of the effective Hamiltonian on the restricted Hilbert
space may easily be performed simultaneously for all pairs
of blocks. Furthermore, even the expansion and Hamiltonian
generation within one block may be parallelized as a set of
states is independently expanded by the application of a set of
operators. This is in contrast to DMRG where parallelization
is currently only possible to a limited extent [42,43], yet
distribution of workload on multiple nodes is key in modern
supercomputer structures. Finally, Krylov subspace methods
can be straightforwardly applied to diagonalizing restricted
Hamiltonians [44].

More broadly, it would be interesting to implement the
RRG algorithm on non-MPS wavefunction Ansätze, and to
explore other operator representations of the AGSP. For ex-
ample, neural network states, especially restricted Boltzmann
machines (RBMs) [45], have been suggested as a promising
variational Ansatz to represent quantum many-body states
[46]. One could adapt RRG to this representation and compare
its performance to other methods of optimizing RBMs.

The calculations in this work have been performed with an
extension of the code provided in Ref. [44].
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APPENDIX A: RRG HYPERPARAMETERS AND LARGER
SYSTEM SIZE

Although the focus of our work is developing a qualita-
tive understanding of the advantages of RRG, we have also
examined how RRG performance depends on the essential hy-
perparameters of the algorithm: the dimension of the targeted
subspace, s, and the number of local operators used from the
AGSP decomposition, D2. Specifically, we studied the energy
discrepancy between the lowest four energy levels determined
by RRG and DMRG at the transition point of the (N = 32)
tricritical Ising model for various s and D (Fig. 6). Our results
indicate that while increasing either s or D improves RRG
accuracy, D has the more pronounced effect, especially on the
accuracy of low-lying excited states. Indeed, increasing D = 2
to D = 8 consistently improves energy accuracy by over an
order of magnitude for a wide selection of s. This behavior
can intuitively be explained by recognizing that the AGSP, and
hence D, controls the renormalization flow performed by RRG

FIG. 6. Energy difference between DMRG and RRG at the crit-
ical point of the tricritical Ising model for varying s (panel) and
D (x axis). The ground-state energy determined by RRG becomes
accurate at low s for sufficiently large D.

which is ultimately more important than the UV initial condi-
tions, controlled by s. Of course, s should always be at least
as large as the degeneracy enforced by symmetry, so that the
local Hilbert spaces used to start the renormalization flow will
span the entire ground-state manifold. Finally, we note that the
energies of lower-lying states are generally determined more
accurately than those of higher-lying states for given s and D.
For example, the energy discrepancy to the DMRG value of
the ground state at s = 4, D = 2 is already ∼10−3, while the
discrepancy of the third excited state (E3) is ∼10−1 for the
same parameters (Fig. 6). We show the full table of the energy
dependence on s and D in the region around the transition
point of the tricritical Ising model in Fig. 7.

These findings are confirmed by a broader examina-
tion of the effects of reducing s and D across all models.
Figure 3 compares DMRG and RRG (N = 32) with D = 4,
s = 5 (magnetic models) or s = 8 (topological models). As
expected, for the magnetic models, reducing D = 8 (used for
the results in the main) text to D = 4 significantly raises
the excited state energies determined by RRG, while the
lower energy states remain accurate. This effect is so se-
vere in the tricritical Ising model that RRG actually fails to
find a level crossing between E3 and E4, although it deter-
mines the E1, E2 crossing—the phase transition—correctly.
The effects of reducing D are also drastic in the anisotropic
XXZ model, where it appears RRG no longer accurately
determines the phase transition. This is in contrast to RRG
performance on the topological models, where the effects
of reducing D are greatly suppressed. Indeed, within the
topological phases the variance of the RRG states remains
relatively small and comparable to those found with D = 8.
We attribute this to the fact that the topological fixed points
we consider are frustration free, implying the ground states
of the block Hamiltonians can be fused to form the true
ground state, without using the AGSP to expand local Hilbert
spaces.

Finally, decreasing s and D reduces RRG resource require-
ments, allowing us to apply RRG to larger system sizes (N =
64). The accuracy of RRG suffers due to the increased system
size, and its troubles with the anisotropic XXZ model and the
excited states of the tricritical Ising model are even more pro-
nounced. However, aside from the anisotropic XXZ model,
RRG still finds an accurate approximation of the ground-state
manifold with proper degeneracy, even in the highly degener-
ate topological models. In fact, the ground-state variances are
not much larger than in the N = 32 simulations, suggesting
that scaling system size is not rapidly compromising RRG’s
accuracy in the ground-state manifold. This is encouraging,
since it may be possible to optimize RRG to be fast enough
at low s and D to provide useful seeding to DMRG in future
studies.

APPENDIX B: DMRG HYPERPARAMETERS

In this Appendix we briefly summarize the hyperparame-
ters used for the DMRG simulations presented in the main text
and in Appendix A. As mentioned above, we used the DMRG
implementation provided by ITENSOR [26]. For all models,
and all states, we adopt the following parameter schedule.
We perform 30 sweeps with an SVD truncation threshold of
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FIG. 7. The first s energy levels determined by RRG near the tricritical Ising model critical point for varying s, D. The ground-state energy
(dark purple) depends most strongly on D, and can be inaccurate even for large s if D is too small (see s = 10, D = 2). Large s and D primarily
improve the accuracy of the excited state energies, and may not be required for analyzing the ground state or locating a first-order phase
transition.

10−10. Over the first 11 sweeps, we allow the bond dimension
to grow gradually from 10 to 100, and the final 20 sweeps
are all performed with a bond dimension of 100. The Ising
models never saturated this bond dimension, while the topo-
logical and anisotropic XXZ models did saturate this bond
dimension near criticality. We also applied density matrix
corrections [23] for the first 15 sweeps, beginning with noise
value of 10−4, decreasing to 10−8, and vanishing for the final
15 sweeps.

APPENDIX C: TOPOLOGICAL MODELS

Here, we briefly review the topological models treated in
the main text, which include terms of the form

Htop =
L−N∑

j=2

σ z
j−1σ

x
j · · · σ x

j+N−1σ
z
j+N for N = 1, 2. (C1)

These Hamiltonians can be understood through either the sta-
bilizer formalism or via a Majorana representation [30]. Let

us focus on the most elementary case N = 1 as it straightfor-
wardly generalizes to larger N . Each spin can be represented
by two Majorana fermions with the relation between spin and
Majorana operators γ 1

j and γ 2
j given by

σ x
j = iγ 1

j γ
2
j ,

σ
y
j =

∏

k< j

(
iγ 1

k γ 2
k

)
γ 2

j ,

σ z
j =

∏

k< j

(
iγ 1

k γ 2
k

)
γ 1

j . (C2)

The Hamiltonian of the N = 1 case with term σ z
i−1σ

x
i σ z

i+1 then
reads

H =
L−1∑

j=2

iγ 2
j−1γ

1
j+1. (C3)

It becomes obvious from the Hamiltonian and the graphical
representation in Fig. 2 that two Majorana modes are left
uncoupled on either end of the chain. One can then form
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localized spin-1/2 degrees of freedom from these Majoranas
so that the ground state belongs to the same topological
class as the one of the AKLT model exhibiting a fourfold
ground-state degeneracy. Each increase of N by one adds a
free Majorana mode at either edge leading to an additional

factor of 2 in the ground-state degeneracy meaning that the
ground state of the general model is 2N+1-fold degenerate.
For even N , one Majorana from each edge must pair to form
a nonlocal degree of freedom contributing to the degeneracy
which results in symmetry breaking in the spin language [30].
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