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We propose and analyze a method for preparing low entropy many-body states in isolated quantum optical
systems of atoms, ions, and molecules. Our approach is based upon shifting entropy between different
regions of a system by spatially modulating the magnitude of the effective Hamiltonian. We conduct two case
studies, on a topological spin chain and the spinful fermionic Hubbard model, focusing on the key question:
can a “conformal cooling quench” remove sufficient entropy within experimentally accessible timescales?
Finite-temperature, time-dependent matrix product state calculations reveal that even moderately sized bath
regions can remove enough energy and entropy density to expose coherent low-temperature physics. The
protocol is particularly natural in systems with long-range interactions, such as lattice-trapped polar
molecules and Rydberg-excited atoms, where the magnitude of the Hamiltonian scales directly with the
interparticle spacing. To this end, we propose simple, near-term implementations of conformal cooling
quenches in systems of atoms or molecules, where signatures of low-temperature phases may be observed.
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Ultracold quantum gases have reached the extraordinary
realm of sub-nanokelvin temperatures [1,2], revealing, along
the way, phenomena ranging from Bose-Einstein condensa-
tion and Cooper-paired superfluidity to Mott insulators and
localization [3–7]. This scientific impact owes, in part, to a
flexible array of cooling techniques that can effectively
quench the kinetic energy of atomic systems; indeed, the
laser cooling of atomic registers in optical tweezers has
enabled the observation of few-particle quantum interference
and entanglement [8,9], while the evaporative cooling of
Bose gases has realized temperatures nearly two orders of
magnitude smaller than that required for condensation [10].
Nevertheless, these temperatures are still too high to

emulate a number of more exotic and delicate quantum
phases, including antiferromagnetic spin liquids, fractional
Chern insulators, and high-temperature superconductors [11–
13]. The figure of merit for observing such physics is not the
absolute temperature, but rather the dimensionless entropy
density in units of kB [14]. Reaching ultralow entropy
densities remains a major challenge for many-body quantum
simulations despite the multitude of kinetic cooling tech-
niques. This challenge is particularly acute for gases in deep
optical lattice potentials, for which transport, and thus
evaporative cooling, is slowed [15]. Moreover, in lattice
systems representing models of quantum magnetism, the
entropy resides primarily in spin, rather than motional,
degrees of freedom [16]. Expelling such entropy through
evaporative cooling requires the conversion of spin excita-
tions to kinetic excitations, a process that is typically
inefficient [17–19].

To access low entropy phases of matter, two broad
approaches have been proposed toward overcoming this
challenge. The first is adiabatic preparation, where one
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FIG. 1. (a) If the Hamiltonian in the bath region is related
to the Hamiltonian in the “system” region by a constant re-
scaling, HB ¼ λHS, their entropy-energy-density curves satisfy
sBðEÞ ¼ sSðE=λÞ. Thus preparing at state with constant entropy
density establishes a temperature differential TB ¼ λTS, since
T ¼ ðdE=dSÞ. (b) Schematic representation of particles or spins
interacting through a long-range, power-law interaction 1=Rα. If
the interparticle spacing on the left (bath) is increased by a factor d
relative to the right (system), then HB ¼ ð1=dÞαHS. (c) In this
case, a uniform Néel state has a temperature differential after
reaching local equilibrium, and the resulting evolution will remove
entropy from the right half of the chain as the system reaches
global equilibrium.
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initializes a low entropy state and changes the Hamiltonian
gradually until the desired many-body state is reached
[20–22]. However, the final entropy density is bounded
from below by the initial entropy density, and experimental
constraints or phase transitions may preclude a suitable
adiabat. The second approach is to “shift entropy else-
where” [11,22–26], using the system’s own degrees of
freedom as a bath [17,27,28]. Recently, this technique has
enabled the experimental observation of long-range anti-
ferromagnetic order in quantum simulations of the Fermi-
Hubbard model; in particular, two identical systems with
extremely different densities were placed in contact with
one another [22,25], resulting in the emergence of an
ultralow entropy region [26].
In this Letter, we propose and analyze a class of methods

—termed conformal cooling quenches—for shifting
entropy by spatially modulating the magnitude of the
Hamiltonian [29]. The intuition behind this approach is
best illustrated as follows: Suppose that we take a system’s
Hamiltonian H and either suddenly or adiabatically reduce
it by a factor λ < 1, takingH → λH. Since kBT has units of
energy, the temperature T is accordingly reduced by
T → λT. When applied to the entire system, this cooling
is trivial, since it amounts to a change of units without
reducing the entropy density. However, if the reduction by λ
instead occurs for only a portion of the system, which we
call the “bath,” the change in temperature is physical and
establishes a temperature gradient; during equilibration,
entropy will then flow out of the system and into the bath.
This generalizes previous studies, where entropy flow

relies on particle itinerance, while the temperature gradient is
inherited from a density gradient [22,25,26]. In particular,
our method is applicable not only to itinerant Hubbard
systems, but also to spin models. This latter case is especially
relevant to recent developments in trapped ion arrays
[30,31], optical tweezer arrays [32,33], and ultracold mol-
ecules [34,35], where versatile spin models with spatially
tunable Hamiltonian parameters are increasingly accessible.
One virtue of the conformal cooling approach is that it

can “cool” a system within a metastable state space. For
example, conformal cooling can be applied to a gas
equilibrating at negative kinetic or spin temperature [36],
bringing the system toward zero temperature from below. It
can also be applied to gases equilibrating in high-energy
manifolds of states, i.e., in excited bands of an optical
lattice [37,38]. Systems equilibrating at negative tempera-
tures or in higher bands can exhibit strong frustration
without complicated band engineering.
We will begin by introducing the thermodynamics of our

approach, focusing on two questions: 1) how much entropy
can a cooling quench remove and 2) how long does it take?
Next, we perform a large-scale numerical study of both a
1D topological spin chain and the fermionic Hubbard
model, demonstrating that realistic cooling quenches can
remove enough entropy to reveal their low-temperature

physics. Finally, we discuss natural experimental imple-
mentations of our approach, focusing on ultracold polar
molecules and Rydberg atom arrays.
General strategy.—We envision spatially demarcating

the degrees of freedom into a bath (B) and system (S) which
are placed end to end, so that the coupling between
their boundaries scales subextensively with their volume
[Fig. 1(b)] [39]. We assume that the HamiltonianHB (bath)
is identical to HS (system), except that its magnitude is
scaled by a factor λ < 1. The entropy (s) versus energy-
density (E) curves in the two regions are then related
by sBðEÞ ¼ sSðE=λÞ and their temperatures by TBðEÞ ¼
λTSðE=λÞ [Fig. 1(a)]. In the following, wewill consider two
protocols, quenched and adiabatic.
Quench protocol.—In the quench approach, the

Hamiltonians are time independent with HB ¼ λHS. At
t ¼ 0, we prepare a uniform initial state (e.g., a product
state) and simply let it evolve. Equivalently, one can begin
in thermal equilibrium with HB ¼ HS, and then suddenly
reduce HB to HB ¼ λHS. The overall system is now in
local equilibrium, with the local density matrices in B and S
identical; thus, sB ¼ sS and TB ¼ λTS. As the system
evolves toward global equilibrium, entropy will follow
the thermal gradient and flow from S to B.
The final equilibrium temperature TðqÞ

f is determined by
energy conservation postquench. Noting that the energy
just after the quench is NSESðTiÞ þ NBλESðTiÞ, and using
the relation EBðTÞ ¼ λESðT=λÞ, we have

ðNS þ λNBÞESðTiÞ ¼ NSESðTðqÞ
f Þ þ NBλESðTðqÞ

f =λÞ; ð1Þ

where NS, NB are the number of sites in the system and
bath, and Ti is the initial temperature of the system. When
λNB ≫ NS, we have TðqÞ

f ¼ λTi, but more generally, one
should choose λ so as to minimize TðqÞ

f based on the precise
form of ESðTÞ. While we have assumed a sharp distinction
between S and B for simplicity, one can let the spatial
modulation λðx⃗Þ vary smoothly, for example, in the “ramp”
region shown in Figs. 2 and 4(a), in which case Eq. (1) is
replaced by an integral over the energy density.
Adiabatic protocol.—The cooling is more effective if the

magnitude of HB ¼ ΛðtÞHS is instead slowly reduced in
time, with Λðt ¼ 0Þ ¼ 1 and Λðt → ∞Þ ¼ λ. In the
isentropic limit, the final system temperature TðaÞ

f is
determined by

ðNB þ NSÞsSðTiÞ ¼ NBsSðTðaÞ
f =λÞ þ NSsSðTðaÞ

f Þ; ð2Þ

with TðaÞ
f ≤ TðqÞ

f . When the bath and system are end to end,
diffusive dynamics imply that the equilibration time teq
scales as L2

S=ΛðtÞ [cf. Eq. (4)] where LS is the linear extent
of the system and adiabaticity requires ∂tΛ ≪ 1=teq. For
small Λ, the bath and system will eventually fall out of
equilibrium and additional entropy will be produced, though

the temperature will always be upper bounded by TðqÞ
f .
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To demonstrate that conformal cooling can shift signifi-
cant entropy out of the system even for moderate bath sizes
and short timescales, we numerically investigate two
distinct settings: the S ¼ 1 Haldane topological antiferro-
magnet and the fermionic Hubbard model.
Conformal cooling in an S ¼ 1 Haldane chain.—

Consider a one-dimensional chain of S ¼ 1 spins with
Hamiltonian

H½λx�¼
X

x

λxhx¼J
X

x

λx

�
Sx ·Sxþ1þ

γ

3
ðSx ·Sxþ1Þ2

�
: ð3Þ

At both the Heisenberg point γ ¼ 0 and the Affleck-
Kennedy-Lieb-Tasaki (AKLT) point γ ¼ 1, the spin chain
is a gapped topological paramagnet in the Haldane phase
[41,42]. The topology of the phase has a striking signature
in a finite-length chain, which exhibits a pair of localized
spin-1=2 edge states. At temperatures below the bulk gap,
T < Δ ∼ J, these localized edge states can coherently store
quantum information for long times, providing a sharp
experimental signature of the topological phase [43].
Calculating the thermodynamic energy-temperature rela-

tion EðTÞ using exact diagonalization reveals that a modest
bath size of NB=NS ≈ 2–3 is sufficient to cool from the
Néel product state j↑↓↑↓ � � �i, which corresponds to an
initial temperature Ti ¼ 1.45Δ, to well below the gap
TðqÞ
f ≈ 0.7Δ (see Supplemental Material [44]). Here the

pure-state temperature is defined by inverting EðTÞ.
Since the spin chain is diffusive [45], the timescale

required for cooling is determined by Fourier’s law.
When λðxÞ varies smoothly compared to the lattice scale,
the local thermal conductivity κ and specific heat c
are determined by rescaling, κðT; xÞ ¼ λðxÞκS½TðxÞ=λðxÞ�
and cðT; xÞ ¼ cS½TðxÞ=λðxÞ�, where κSðTÞ and cSðTÞ
are defined with λ ¼ 1. Applying this within a simple
lumped element model predicts that temperature will
decrease as [44]

TSðtÞ ∼ TðqÞ
f þK

LSffiffiffiffiffiffiffiffi
tDB

p ðTi − TðqÞ
f Þ; ð4Þ

where DB is the thermal diffusivity of the bath and K is
an Oð1Þ geometrical factor. For bath temperatures
above λJ, the diffusivity will generically saturate to a
temperature-independent value, DB ∝ λJ=ℏ [46], implying
that teq ∼ L2

SðλJ=ℏÞ−1.
To verify these dynamics, we simulate the evolution of a

finite-energy-density pure state using the time-evolving
block decimation (TEBD) algorithm [47]. It is exponen-
tially difficult to simulate finite-temperature dynamics,
limiting our system to L ¼ 30 sites (Fig. 2) [48]. We
initialize a uniform state jΨð0Þi ¼ e−τĤ½λx¼1�j↑↓↑↓ � � �i,
where τ ¼ 0.35=J, resulting in an energy density that
corresponds to temperature TS ¼ 0.51J after local equili-
bration [49]. The system is then quenched into a spatially
nonuniform Ĥ½λx� (Fig. 2). Using the optimal λ0 ¼ 0.17
in the bath leads to a final predicted temperature:

TðqÞ
f ¼ 0.29J.
The evolution of the local energy density

hλxĥxðtÞi during the cooling quench is depicted in
Fig. 2. The energy density in region S at time
t ¼ 100=J corresponds to TS ¼ 0.34J, within 14% of

the expected TðqÞ
f [44]. Moreover, the relaxation dynamics

are roughly consistent with TS ∼ TðqÞ
f þ ðTi − TðqÞ

f Þ ffiffiffiffiffiffiffiffiffi
teq=t

p
,

where teq ≈ 0.22ðKLSÞ2ðλJ=ℏÞ−1, consistent with the
expectation 1=DB ∼ 0.19=λ [44,46].
Even for a relatively small bath size, the cooling quench

has a dramatic effect on the dynamical correlation function
of the topological edge mode. Since the edge state in
region S will generically have overlap with the rightmost
spin Sμend, its coherence can be probed via the correlation
function

CzzðtÞ ¼ hΨjSzendðtþ tfÞSzendðtfÞjΨi; ð5Þ

where the measurement only begins after the cooling
quench is complete (tf ¼ 100=J). At T ¼ 0, these corre-
lations should asymptote to a finite constant [Fig. 3(a)],
while at large T [Fig. 3(d)], they will decay exponentially.
We compare CzzðtÞ under four preparation scenarios
described in Fig. 3. The conformal cooling quench
improves the coherence time [i.e., the decay timescale of
CzzðtÞ] by more than an order of magnitude.

FIG. 2. Quench cooling of a 30-site spin-1 Haldane chain. After
initializing the state at t ¼ 0 with uniform entropy density, the
coupling constants λx are scaled according to the bottom part of
the figure, which should transport heat from the system on the
right to the bath on the left. In the top part, we plot the change in
energy density hxðtÞ − hxð0Þ as the chain evolves.
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Adiabatic conformal cooling in the fermionic Hubbard
model.—We next consider the adiabatic protocol applied to
the fermionic Hubbard model, H ¼ −

P
hi;ji;σ tijc

†
iσcjσþ

U
P

i ni↑ni↓ − μ
P

iσ niσ . Here, we focus on the Mott
insulating phase at half filling with t=U ≪ 1 and T < U.
While the fermions’ motion is quenched, their spins
interact via an effective antiferromagnetic Heisenberg inter-
action, Heff ¼

P
hi;ji Jij½Si · Sj − 1

4
�, where J ¼ 4ðt2ij=UÞ is

the superexchange coupling.
In the Mott regime, where the dynamics are governed by

Heff , adiabatic cooling is naturally realized by decreasing J
in the bath region (relative to the system region); one can
achieve this by weakly modulating the depth of the optical
potential, Vðx⃗Þ ¼ −V0ðx⃗Þ

P
d
i¼1 cosðkxiÞ2, where V0ðx⃗Þ

is slowly varying and k is the wave vector of optical
lattice. Increasing V0 has three effects on the effective
Hamiltonian: U will increase, as the orbitals are further
localized, μ will increase, as the trap is deeper, and t will
decrease due to the barrier height. Since t is exponentially
more sensitive thanU to the trap depth, ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðV0=ErÞ

p
(Er

is the recoil energy), the dominant effect is to modulate
the hoppings [50]. Assuming μ is compensated to
maintain half filling, the superexchange energy becomes
Jij ∝ ξ2ðxÞe−4ξðxÞ, precisely the desired modulation.
Fortuitously, a small modulation in V0 is already capable
of dramatically reducing the system’s temperature; for
example, in the 3D cubic Heisenberg model, a 6% change
in the lattice depth can cool the system from 1.4TN [51]
down to the Néel temperature, TN [44].
Note that, in the above approach, we choose to scale t but

not U, which differs from the overall scaling H → λH we

had initially used to motivate our work. Of course in the
limit t, T ≪ U, the conclusions are the same because the
thermodynamics are governed by Heff ∝ J ¼ 4t2=U, so
scaling t does effectively enact an overall scaling of the
Hamiltonian. But, more generally, cooling only requires the
criteria ∂tTðs; t; UÞ > 0, which we have verified using
determinantal quantum Monte Carlo [44], so long as
the initial entropy density satisfies s < kB logð2Þ [52].
To this end, our proposal will also work away from the
t, T ≪ U limit.
To confirm the effectiveness of the adiabatic protocol, we

simulate the dynamics of the spinful 1D fermionic Hubbard
model. We use the TEBD method to time evolve a purified
finite-temperature ensemble [53]. At time t ¼ 0 the
Hamiltonian is uniform, U ¼ 1, tij ¼ 0.1, with an initial
thermal state ρ ¼ e−H=Ti=Z at Ti ¼ 1.4J. We then time
evolve the ensemble with a Hamiltonian HðtÞ, in which tij
decreases adiabatically in the bath (see Supplemental
Material [44]). Since the Hamiltonian changes in time,
energy is not conserved, and we divide it into heat and
work, _E ¼ _Q − _W [44], enabling us to plot the evolution of
the heat density Q in Fig. 4(a). Total heat is conserved, but
with clear transport from S to B. As a more qualitative
thermometer, we note that, at T ¼ 0, the system should
display algebraic antiferromagnetic correlations. To reveal
them, we place a small Zeeman field H ¼ 0.05Sz on the
right edge spin, both in the initial thermal state and the
subsequent dynamics. As depicted in Fig. 4(b), the finite
temperature of the initial thermal state disorders the
magnetization hSzi, but as the dynamics proceed and
cooling occurs, the antiferromagnetic correlations become
clearly manifest.
Experimental implementation.—Our conformal cooling

protocols are well suited to systems with long-ranged
interactions, such as polar molecules, Rydberg atoms,
and trapped ions [40,54–57]. To implement the quench
protocol, we envision a setup where the average spacing
between particles is larger in the bath than in the system,
rB > rS. Assuming power-law interactions (1=Rα),
the Hamiltonian in B will be reduced by a constant factor
λ ¼ ðrS=rBÞα relative to that in S [Fig. 1(b)] [58].
This approach is particularly applicable to two classes

of current generation experimental platforms: ultracold
polar molecules and Rydberg atom arrays. In the molecu-
lar context, the optical lattice filling fraction ν < 1 leads to
random dilution [40]. Fortunately, the cooling quench is
natural to implement in this randomly diluted case, since
one can make rB > rS merely by modulating the average
density, without having to ensure the particles in B lie
on a particular sublattice. In this case, simply time
evolving an initial product state in the presence of this
density modulation will cool the high-density region and
could provide a simple route toward studying, for
example, algebraically correlated random-singlet phases
[59–61].

FIG. 3. The dynamical correlation function CzzðtÞ measured
after four initialization protocols: (a) optimal, CzzðtÞ for the ground
state of an L ¼ 10 chain; (b) finite T ¼ 0.51J, without a cooling
quench. The edge coherence rapidly decays. (c) Finite Ti ¼ 0.51J,
but starting theCzz measurement after the cooling quench shown in
Fig. 2. The coherence is improved by an order of magnitude.
(d) Same as (c), but eliminating the coupling between sites
i ¼ 20 and 21 after the quench, which cuts off the bath.
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Although we have studied the AKLT model because it
admits simple numerical observables for quantifying
entropy, the same cooling protocol can also be applied
to the long-range, mixed-field Ising model, which is
naturally realized in a Rydberg atom array [32,33,
62–64]. In this case, the spacing between the atoms and/
or the intensity of the Rydberg excitation light can be made
spatially varying in order to create well-defined bath
and system regions in one, two, or even three dimensions

]65–67 ]. The complex phase diagram associated with this
model exhibits a variety of competing orders and phase
transitions, providing a rich playground for implementing
conformal cooling [68].
In summary, we have proposed a general method for

preparing low entropy many-body states in isolated quan-
tum systems. Our approach can be naturally implemented
in systems with power-law interactions by simply diluting
the particle density of the bath region; moreover, in the
Supplemental Material, we also provide a simple experi-
mental blueprint for implementing conformal cooling in the
spinful fermionic Hubbard model [44]. Looking forward,
our proposal raises a number of intriguing questions: Is it
possible to implement a refrigeration cycle by repeated
preparation of the bath state? Can one optimize a side-by-
side geometry that could reduce the equilibration time? By
performing conformal cooling during a quantum phase
transition, can one reduce the rate of Kibble-Zurek defect
formation [62].
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