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The competition between scrambling unitary evolution and projective measurements leads to a phase
transition in the dynamics of quantum entanglement. Here, we demonstrate that the nature of this transition
is fundamentally altered by the presence of long-range, power-law interactions. For sufficiently weak
power laws, the measurement-induced transition is described by conformal field theory, analogous to short-
range-interacting hybrid circuits. However, beyond a critical power law, we demonstrate that long-range
interactions give rise to a continuum of nonconformal universality classes, with continuously varying
critical exponents. We numerically determine the phase diagram for a one-dimensional, long-range-
interacting hybrid circuit model as a function of the power-law exponent and the measurement rate. Finally,
by using an analytic mapping to a long-range quantum Ising model, we provide a theoretical understanding
for the critical power law.
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Programmable simulators—capable of supporting many-
body entanglement—have opened the door to a new family
of quantum dynamical questions [1–6]. A unifying theme
behind these queries is the competition between many-
body entangling interactions and entanglement-suppressing
dynamics. For example, many-body localization arises
when interactions are pitted against strong disorder
[7–10]. Similarly, the dissipative preparation of entangled
states requires a delicate balance between unitary and
incoherent evolution [11–15]. Recently, a tremendous
amount of excitement has focused on a new paradigm
for such competition, namely, “hybrid” quantum circuits
composed of scrambling dynamics interspersed with pro-
jective measurements (Fig. 1) [16,18–22].
Naively, such evolution appears similar to the perhaps

more familiar case of open-system dynamics, where an
environment is viewed as constantly measuring the system.
But there is a crucial difference: in open-system dynamics,
the results of the environment’s measurements are
unknown, and only the average over outcomes determines
the system’s evolution [23–25]. In hybrid quantum circuits,
however, the projective measurement results are recorded,
so the dynamics resolve individual quantum trajectories
[18,20]. This distinction has a profound consequence on the
long-time dynamics.
Most fundamentally, instead of approaching a steady-

state density matrix, the system perpetually fluctuates in
Hilbert space, building up many-body entanglement that is,
possibly, later eradicated by a few well-placed measure-
ments [26–31]. This constant ebb and flow of entanglement
gives rise to a novel dynamical phase transition: at low
measurement rates, the dynamics generate extensive

(a)

(b)

FIG. 1. (a) Schematic of our long-range interacting hybrid
circuit, which consists of layers of unitary evolution and
randomly placed projective measurements. Two-qubit gates
separated by distance r occur with a probability PðrÞ ∼ 1=rα.
(b) Phase diagram as a function of the measurement rate p and the
power-law exponent α. For α ≳ 3, the measurement-induced
phase transition is described by conformal field theory (purple),
while for α≲ 3, the universality changes continuously (purple-
red gradient). For α < 2, area-law entropy scaling crosses over to
subvolume law scaling, where half-chain entanglement entropy
(SL=2) scales as L2−α. Despite this different scaling behavior, both
the area and subvolume law regimes are in the purifying phase.
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entanglement, while at high measurement rates, only few-
body entangled clusters emerge [18–20]. To date, this
measurement-induced transition has been explored in
two limits: hybrid quantum circuits with local interactions
[30,32–37] and all-to-all interacting circuits where power-
ful analytic techniques can be applied [38–40].
Understanding the nature of the measurement-induced
transition in generic, long-range-interacting systems (i.e.,
with power laws ∼1=rα) remains an essential open question
that finds motivation from two complementary angles.
First, such long-range interactions are known to have

profound effects on the universality, and indeed, even the
existence, of many phase transitions [41–46]; in addition,
long-range interactions can parametrically alter the form of
Lieb-Robinson bounds and scrambling light cones [47–50].
Second, many of the most promising experimental plat-
forms for investigating the measurement-induced transi-
tion, including Rydberg tweezer arrays, polar molecules,
trapped ions and solid-state magnetic dipoles, inherently
feature long-range interactions [51–55].
In this Letter, we demonstrate that the interplay between

long-range interactions and projective measurements leads
to fundamentally new universality classes for the meas-
urement-induced transition. Our main results are threefold.
First, we find that for α≳ 3 the universality class is
consistent with previous studies of short-range models;
however, for α≲ 3, the phase transition is no longer
described by conformal field theory (CFT) and exhibits
continuously varying critical exponents (Fig. 2). Second,
we determine the phase diagram associated with the
transition as a function of the measurement rate p and
the power-law exponent α [Fig. 1(b)]. For α > 2, the
transition occurs between phases with volume- and

area-law scaling of entanglement entropy, while for
α < 2, the area-law entropy scaling crosses over to
“subvolume” law scaling [56]. Finally, we develop an
exact correspondence between hybrid quantum circuits
with long-range interactions and a quantum Ising model
with long-range interactions. This correspondence allows
us to understand the measurement-induced transition in
terms of the ground-state properties of a quantum spin
chain [58–60]; perhaps most intriguingly, it provides an
analytic explanation for the dramatic change in universality
at α ≈ 3—this is precisely when long-range interactions
become a relevant perturbation.
Long-range hybrid quantum circuits.—Consider a one-

dimensional system of L qubits with periodic boundary
conditions. Our hybrid quantum circuits consist of long-
range gates interspersed with projective measurements
[Fig. 1(a)] [61].
More precisely, a single time step of the scrambling

portion of the evolution consists of L random two-qubit
Clifford gates acting on qubits separated by r sites, with r
sampled according to PðrÞ ∼ 1=rα; each scrambling time
step is then followed by pL randomly placed projective
measurements [56,62].
We have carefully chosen our scrambling dynamics to be

qualitatively similar to those generated by long-range
interacting Hamiltonians. Indeed, the light cone (as mea-
sured via an out-of-time-order correlator) for our random
circuit model with power law α is expected to match the
corresponding light cone generated by chaotic Hamiltonian
dynamics with power law α=2 [63]. To this end, our
analysis also provides insights into the measurement-
induced transition when the dynamics are driven by a
long-range-interacting Hamiltonian (provided one maps
α → α=2).
Diagnostics.—We characterize the dynamics of our

long-range hybrid quantum circuits using four diagnostics:
(i) the half-chain entanglement entropy (SL=2); (ii) the
antipodal mutual information (IAB) [19,20]; (iii) the global
purification dynamics (SðtÞ) [26]; and (iv) the single-qubit
purification time (τp) [27]. All observables are defined as
average quantities over many circuit realizations, and SL=2
and IAB are steady-state quantities, i.e., averaged over
late times.
The half-chain entanglement entropy SL=2 is an intuitive

diagnostic of the transition in the case of short-range
interactions: at low measurement rates, the system evolves
to an extensively entangled state and SL=2 ∼ L (volume
law), while at high measurement rates the system remains
in a product state and SL=2 ∼Oð1Þ (area law). Because of
subleading corrections to its critical scaling form, SL=2 is
challenging to work with quantitatively [19]. It turns out to
be more straightforward to analyze IAB, defined as the
mutual information between two small anti-podal regions
[Fig. 3(g)]. Crucially, IAB ≈ 0 in both the product and
extensively entangled phases (where the system is

FIG. 2. The correlation length critical exponent, ν (red), and the
dynamical critical exponent, z (teal), extracted from a finite-size
scaling analysis of the purification time. For α≳ 3, one finds
z ≈ 1 corresponding to CFT. For α≲ 3, both critical exponents
vary continuously, indicating a continuum of non-CFT univer-
sality classes in this regime. The dotted line (and shaded grey
region) is consistent with a critical power law, αc ¼ 3 − η, where
η ∼ 0.2 is the anomalous dimension.
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unentangled or thermal respectively), and only peaks in the
critical region, making it simple to use for finite-size
scaling [19].
Both SL=2 and IAB require a notion of geometric locality

to be well defined, which breaks down as α → 0 [38,39].
Thus, in order to gain a complete understanding of the
dynamics, we also consider τp, the median time it takes for
measurements to purify a single qubit [Fig. 3(h)] [27]. The
qualitative physics of τp can be understood by considering
the fate of an initially localized bit of entropy (e.g., a single
maximally mixed qubit). For high measurement rates, this
bit of entropy remains localized and hence τp is indepen-
dent of system size and approaches a constant in the
thermodynamic limit. Meanwhile, at low measurement
rates, this bit of entropy becomes delocalized and is
unlikely to purify, so τp diverges with system size. At
the critical point, we expect τp ∼ Lz, where z is the
dynamical exponent. Finally, we complement our study
of the median purification time by investigating the global
entropy of an initially maximally mixed state as a function
of time, SðtÞ [26]; indeed, τp can be understood simply as

the half life of SðtÞ. For high measurement rates, SðtÞ
decays exponentially, while for low measurement rates,
SðtÞ becomes time independent.
Long-range interactions with α ≳ 3.—As a starting point

for our analysis, let us consider fixed α ¼ 3.5. The
observables we investigate exhibit clear evidence of an
entanglement phase transition at a critical measurement
rate, pc [Figs. 3(a)–3(c)]. Perhaps the most striking
signature of the transition comes from the antipodal mutual
information, which exhibits a peak at the critical point that
sharpens with increasing system size [Fig. 3(a)]. Moreover,
the height and location of this peak are independent
of L, consistent with prior observations in short-range-
interacting hybrid circuits [19]. This is a consequence of
conformal symmetry at the critical point [19], and suggests
that the measurement-induced transition remains a CFT for
sufficiently weak power laws (Fig. 2). To quantitatively
characterize the transition, we perform finite-size scaling
[inset, Fig. 3(a)] using the scaling form

IAB ¼ Lβf½ðp − pcÞL1=ν�: ð1Þ

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. (a)–(c) The antipodal mutual information IAB, purification time τp, and global entropy dynamics SðtÞ as a function of the
measurement rate p, for power law α ¼ 3.5. Insets depict the corresponding finite-size scaling collapse with x ¼ ðp − pcÞL1=ν (the
x-axis tick denotes x ¼ 0). Different system sizes (L ¼ ½32; 64; 128; 256; 512�) are indicated via increasing opacity. (d)–(f) Depict
analogous plots for α ¼ 2.25. Both the peak heights of IAB [d] and the crossing points of τp=L [e] exhibit marked L dependence. This
immediately indicates that the measurement-induced transition is no longer conformal. (c),(f) Colors indicate different time slices of SðtÞ
(see legend). Finite-size collapses (insets) are obtained by rescaling t ¼ cL → cLz, with c ¼ f1=2; 2=3; 2g depending on the time slice.
(g) Circuit schematic for IAB. The system is initialized in a product state and the mutual information is measured between antipodal
regions A and B. (h) Circuit schematic for τp. The system is initialized in a product state with a single maximally mixed qubit. To avoid
early-time finite-size effects, we apply a global scrambling Clifford,Us, before evolving with our hybrid circuit. (i) Circuit schematic for
SðtÞ. The system is initialized in a maximally mixed state and slowly purifies under hybrid dynamics.
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Crucially, this allows us to extract both the scaling
dimension β of IAB and the correlation length exponent ν.
We find, β ≈ 0 and ν ≈ 1.3 (Fig. 2), consistent with
all prior results in short-range interacting models
[19,20,26,28,65].
In order to extract the dynamical critical exponent, we

turn to an analysis of the median purification time τp. As
shown in Fig. 3(b), we observe a single crossing point
(which independently identifies pc) for τp=L across all
system sizes. This is consistent with the dynamical scaling
hypothesis,

τpðpÞ ¼ Lzg½ðp − pcÞL1=ν�; ð2Þ

with z ¼ 1 (as expected for a CFT). The conformal nature
of the transition is further confirmed by the finite-size-
scaling collapse depicted in the inset of Fig. 3(b). A few
remarks are in order. First, we find that the correlation
length exponent extracted from τp gives ν ≈ 1.3, in excel-
lent agreement with both with the short-range transition and
the scaling analysis of IAB [56]. Second, one hopes that the
critical exponents extracted from τp can be used to directly
collapse the full time dynamics of the global entropy SðtÞ.
This is indeed born out by the data [Fig. 3(c)], where we
have utilized the general scaling form,

Sðp; tÞ ¼ h½ðp − pcÞL1=ν; t=Lz�: ð3Þ

Although we have focused our discussions on the
specific case of α ¼ 3.5, an extensive numerical study of
the transition for all α ≳ 3 reveals the same physics [56]. In
particular, the critical exponents ν and z are found to agree
with their short-range values, implying that the universality
class of the measurement-induced transition is unchanged
for α ≳ 3.
Long-range interactions with α≲ 3.—We now turn our

attention toward the new physics that arises for α≲ 3. To be
concrete, let us begin by applying the same diagnostic
toolset to long-range hybrid circuits with α ¼ 2.25. Two
profound differences emerge: (i) the location and height
of the peak of IAB drifts with system size [Fig. 3(d)], and
(ii) τp no longer exhibits a single crossing point [Fig. 3(e)].
These trends immediately imply β ≠ 0 and z ≠ 1, indicat-
ing that sufficiently strong power laws alter the universality
class of the transition. More specifically, the critical point is
no longer described by CFT.
To determine precisely when the universality class of

the transition changes, we extract νðαÞ and zðαÞ via the
purification time and the collapse of SðtÞ [Figs. 3(e),3(f)]
[66]. As shown in Fig. 2, for α≲ 3, we find that ν and z
vary continuously; this identifies α ≈ 3 as the threshold for
which long-range effects become relevant for the meas-
urement-induced transition.
Interestingly, further reducing α yields additional mod-

ifications to the transition. Specifically, we find that for

α < 2 the half-chain entanglement entropy always scales
with system size even at very high measurement rate,
i.e., there is no longer a true area-law phase. Instead, there
is subvolume entropy scaling, where SL=2 ∼ Lμ, with
0 < μ < 1 [56]. The emergence of this subvolume law
scaling can be understood quite simply by analyzing the
short-time half-chain entanglement generated by our dynam-
ics. Indeed, a single layer of long-range gates contributes
additional entropy ∼L2−α for α < 2. Numerical analysis
indicates this bound is approximately tight, and we con-
jecture μ ¼ 2 − α [56]. We emphasize, however, that both
the subvolume and area law regimes are in fact in the
purifying phase, connected by a crossover, as evinced by the
constant τp at large measurement rate for α < 2 [56].
At α ¼ 1, the subvolume scaling becomes a true volume

law, and the half-chain entanglement no longer probes the
measurement-induced transition. However, observables
that are not geometrically local, such as SðtÞ, τp, and
the entangling power [39], do not suffer from this limitation
and demonstrate that a measurement-induced transition
occurs for all α ≥ 0 [38,39].
Effective quantum spin model.—To provide a theoretical

understanding for the change of universality at α ≈ 3, we
develop a mapping that relates the steady-state entangle-
ment entropy of our long-range hybrid quantum circuit to
the ground-state properties of a long-range 1D quantum
Ising model [56,67]. This mapping hinges on a conditional
Rényi entropy (which is related to SL=2 via the replica
method [68,69]),

Sð2ÞA ¼ − log

�X
m

p2
m tr ρ2A;m

�
þ log

�X
m

p2
m

�
; ð4Þ

where ·̄ represents an average over circuit realizations,
and ρA;m is the reduced density matrix for subsystem A,
conditioned on a specific set of measurement outcomes, m,
with probabilities pm [56,67]. Much like the half-chain
entanglement entropy, Sð2ÞA undergoes an area-law to
volume-law transition as a function of the measurement
rate [70,71]. Crucially, although this transition belongs to a
different universality class, it is analytically tractable and
will provide insights into the original transition.
In order to compute Sð2ÞA , we consider a slightly modified

circuit that trades random connectivity for random inter-
action strengths. To be precise, we consider a circuit
consisting of layers of single-qubit Haar random unitaries,
projective local-Z measurements, and long-range Ising
interactions θijZiZj, where θij are drawn from a
Gaussian distribution with zero mean and variance
∝ 1=ji − jjα. The scrambling properties of this circuit are
similar to those in our original long-range circuit
[Fig. 1(a)], and we believe that it undergoes a measure-
ment-induced transition of the same universality class (as
long as one considers the same observable).
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One can calculate Sð2ÞA for the modified circuit via an
exact mapping to imaginary time evolution under a long-
ranged Ising Hamiltonian [56,67]:

Heff ¼ −
X
ij

J
ji − jjα ð3σ

z
iσ

z
j − σxi σ

x
jÞ −

X
i

hσxi : ð5Þ

In this context, the measurement-induced transition in Sð2ÞA
can be understood as the symmetry-breaking transition in
the ground state of Heff [67,72].
To this end, let us recall the effect of long-range

interactions on the universality class of the Ising transition.
In particular, one can consider the long-range tail as a
perturbation to the action of the short-ranged model,
δS ¼ R

dqdωqα−1ϕqϕ−q, where q is the momentum, ω
is the Matsubara frequency, and ϕ is the order parameter
[58,73]. At the (short-ranged) Ising critical point, the
scaling dimension of δS is 3 − α − η, where η=2 is the
scaling dimension of the order parameter. Thus, the long-
range coupling becomes a relevant perturbation for the
Ising transition when α < 3 − η. This insight immediately
allows us to understand why the measurement-induced
transition’s universality changes at α≲ 3.
More precisely, we also expect long-range interactions to

become relevant for the measurement-induced transition at
α ¼ 3 − η, where η is now the anomalous dimension of the
short-range measurement-induced transition. Although dif-
ficult to compute directly, one can estimate η in three ways:
(i) in the modified circuit model from this section, the
transition of Sð2ÞA has η ¼ 1=4, (ii) in a Haar-random hybrid
circuit with infinite qudit dimension, the transition of SL=2
has η ¼ 5=24 (and is described by percolation), (iii) in
numerics on short-range interacting hybrid Clifford cir-
cuits, one finds η ≈ 0.22 [28]. All of these calculations
suggest α ≈ 2.8 as the critical threshold for the relevance of
long-range interactions, consistent with our numerical
phase diagram (Fig. 2).
Our work opens the door to a number of intriguing future

directions. First, it would interesting to compare the
critically purifying subvolume law phase obtained in
Ref. [74] to the critical point of hybrid long-range circuits
with α < 2. Despite vastly different microscope origins,
these fixed points both exhibit subvolume entanglement
entropy scaling and polynomial purification time, hinting at
the possibility of a common long-wavelength description.
Second, our predicted phase diagram can be directly probed
in current generation quantum simulators, including inter-
acting boson [37,75] or trapped ion platforms [76].
The latter approach is particularly suitable because the
long-range interaction can, in principle, be tuned between
0 < α < 3 [77,78].
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Note added.—Recently, we became aware of two comple-
mentary works on the measurement-induced transition in
long-range interacting Hamiltonian systems [79,80], which
also identify subvolume law phases.
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