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We implement and characterize a numerical algorithm inspired by the s source framework [B. Swingle and
J. McGreevy, Phys. Rev. B 93, 045127 (2016)] for building a quantum many-body ground state wave function
on a lattice of size 2L by applying adiabatic evolution to the corresponding ground state at size L, along with
L interleaved ancillae. The procedure can in principle be iterated to repeatedly double the size of the system.
We implement the algorithm for several one-dimensional (1D) spin model Hamiltonians, and find that the
construction works particularly well when the gap is large and, interestingly, at scale-invariant critical points.
We explain this feature as a natural consequence of the lattice expansion procedure. This behavior holds for both
the integrable transverse-field Ising model and nonintegrable variations. We also develop an analytic perturbative
understanding of the errors deep in either phase of the transverse-field Ising model, and suggest how the circuit
could be modified to parametrically reduce errors. In addition to sharpening our perspective on entanglement
renormalization in 1D, the algorithm could also potentially be used to build states experimentally, enabling the
realization of certain long-range correlated states with low-depth quantum circuits.
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I. INTRODUCTION

A deep lesson of late 20th-century physics is the renor-
malization group (RG) philosophy: many-body physics is
organized scale by scale. The fruits of this lesson have been
assimilated well into our understanding of classical statistical
physics and of perturbative quantum field theory [1,2]. In
strongly correlated quantum systems, however, we still have
a great deal to learn, in particular about eigenstates and even
ground states of local model Hamiltonians.

Most of many-body Hilbert space is fictional, at least in the
sense that it cannot be reached from a product state by time
evolution with local Hamiltonians in a time polynomial in
system size [3]. Ground states of local Hamiltonians are even
more special: generically (with few exceptions arising from
an overabundance of gapless excitations) the entanglement
entropy of large-enough subregions satisfies an area law [4].
This statement is supported by a great deal of evidence,
and has been rigorously proved for gapped systems in one
dimension (1D) [5].

Importantly, much of the area-law corner of Hilbert space
can be efficiently parametrized using tensor networks. This
has been done with several different tensor network geome-
tries, such as matrix product states (MPS) [6–9] in 1D, and
projected entangled pair states (PEPS) [10–13] and isomet-
ric tensor networks [14,15] in two dimensions (2D). These
parametrizations have proven to be very effective variational

Ansätzes in a wide range of circumstances [16,17].1 In par-
ticular, the density matrix renormalization group (DMRG)
algorithm can be understood as a variational optimization on
the MPS manifold [22,23]. Despite their successes, variational
algorithms based on area-law tensor network Ansätzes face
some limitations. Specifically, in gapless phases, or at critical
points, entanglement entropy can diverge with subsystem size
making these area-law tensor networks suboptimal variational
manifolds. It is also known that there exist even area-law
states that do not have an efficient MPS representation [24].
Finally, many tensor networks are difficult to efficiently opti-
mize in D > 1 [17,25].

Developing numerical methods for gapless phases and
critical points requires understanding a richer entanglement
structure than area-law states exhibit; we must account for
the amount of entanglement at each length scale. The pro-
cess of organizing our understanding of the entanglement in
a quantum state scale by scale is sometimes called entan-
glement renormalization [26,27]. So far, the best-developed
implementation of this idea is the multiscale entanglement
renormalization Ansatz (MERA), which is a state-of-the-art

1We note that there are also nonvariational algorithms for finding
ground states that make use of tensor networks, some of which are
provably efficient in some circumstances [18–21].
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variational Ansatz for the study of 1D quantum critical points
[28–32]. MERA has also inspired several variants such as
deep MERA (DMERA) [33] and an analytic construction
continuous MERA (cMERA) [34,35].

Despite the successes of MERA, developing a deeper
understanding of entanglement renormalization remains a key
challenge in condensed matter physics. More generally, ex-
isting tensor network methods leave room for improvement
in several ways. First, the numerical values of the optimal
tensors found in this way are difficult to interpret or directly
relate to analytic results; the procedure is essentially a black
box (though we note that in certain situations analytical con-
structions of MERA have been found using wavelets [36,37]).
Second, and more practically, the variational minimization of
the expectation value of the Hamiltonian requires sweeping
across the lattice many times, an often costly procedure
which has many opportunities to get stuck in locally optimal
configurations.

In this paper, we introduce and benchmark a numerical
algorithm for entanglement renormalization that takes small
steps toward alleviating some of these issues. In particular,
we provide a numerical implementation of the so-called s
source framework, originally introduced in Ref. [38]. We
note that the purpose of this work is to implement s source
and characterize its accuracy; we leave a rigorous resource
analysis to future studies.

We now briefly describe the s source formalism; a more
thorough explanation is provided in Ref. [38]. Let HL be a
Hamiltonian defined on a d-dimensional lattice of size Ld

and |ψL〉 be the associated ground state. The Hamiltonian
family {HL} belongs to an s source fixed point if |ψ2L〉 can
be constructed by applying a quasilocal unitary U to s copies
of |ψL〉 and some unentangled ancilla degrees of freedom.
In many cases, we expect the adiabatic theorem to provide a
construction of such a quasilocal unitary: if there is a gapped
path from HL to H2L then adiabatic evolution along this path
will suffice. There is evidence that many known states are s
source fixed points, including trivial insulators (s = 0), chiral
insulators (s = 1), and various field theories [38]. Examples
with s > 1 are known as well, including fracton models
[39–41]. Belonging to an s source fixed point constrains the
growth of entanglement with system size, and in particular
when s < 2d−1 implies an area law for the entanglement
entropy of subregions [38]. While the construction in Ref. [38]
is more general, we will specialize our numerical exploration
to one-dimensional spin chains.

The key advantage of s source is its ability to generate
long-range entangled states using a constant depth circuit
for s � 1. We illustrate this by comparing it to some more
intuitive state preparation schemes. It is well known that
building highly entangled states from a product state with
local gates requires extensively deep quantum circuits [42].
Even with |ψL〉 as a resource, not all renormalization schemes
generate long-range entanglement. In 1D, for example, one
might consider concatenating two copies of a ground state end
to end, and then acting with a local unitary to “glue” the states
together. Unfortunately, constructing a long-range entangled
state in this manner is not possible since the local unitary
cannot strongly entangle distant spins in the two halves. In
the s source framework in 1D, we circumvent this issue by

intercalating L ancilla spins between the spins that make
up |ψL〉, thus expanding the underlying lattice. Crucially,
this implies that a quasilocal unitary only needs to locally
redistribute the rescaled entanglement structure. We will refer
to the state formed by interleaving ancillae and |ψL〉 as the
“s = 1 input state” or just the “s source input state” where
s = 1 is to be understood. In contrast, we would call a product
state of 2L spins an “s = 0 input state.”

To adapt the s source construction to a numerical setting,
one must decide how to implement the quasilocal unitary.
One possibility would be to perform quasiadiabatic evolution
via an algorithm like time-evolving block decimation (TEBD)
[43,44]. In this work, we take an alternative route and fix a ten-
sor network structure informed by the analytic Trotterization
of the adiabatic evolution, which we refer to as the s source
tensor network. The tensor network we obtain closely resem-
bles a single layer of the MERA tensor network, and repeated
application indeed results in a flavor of MERA. In principle,
the Trotterized adiabatic unitary provides an exact expression
for the s source tensor network, but explicitly calculating it
is generically computationally intractable. Instead, we seek to
find the corresponding tensor network through other means.
One approach, which is possible in certain limiting cases, is to
make use of the Trotterized structure to determine analytic ex-
pressions for the constituent tensors. More generally, we can
determine the s source network variationally by minimizing
the expectation value of H2L with |ψL〉 as input [Fig. 1(a)].
At its core, since we are still using a variational approach
to identify the s source tensor network, our prior concerns of
becoming stuck in a locally optimal configuration still apply.

Although we still resort to variational optimization, the
existence of the analytic expression defining s source allows
us to physically interpret the resulting network and encour-
ages us to optimize it in novel ways. For example, when
considering multilayer s source [red boxes in Fig. 1(b)], we
think of each layer as an independent adiabatic expansion and
optimize it separately by minimizing the energy of the ap-
propriate Hamiltonian at that scale, given the input generated
by the preceding layers. We emphasize that this is slightly
different from the usual optimization of MERA, where one
sweeps over the entire network multiple times. In general,
our numerical procedure incurs larger errors than optimizing
across all layers, and hence is suboptimal when compared to
standard global optimization approaches. Even so, it is less
computationally expensive and, as we will explore below, can
still perform well in certain cases of interest. In addition, by
utilizing a greedy numerical algorithm, our implementation
allows us to numerically test the validity of the adiabatic
construction at the heart of the s source approach.

We will benchmark our implementation’s performance on
the standard transverse-field Ising model (TFIM)

HTFIM = −J
∑
〈i j〉

σ z
i σ z

j − h
∑

i

σ x
i (1)

as well as the TFIM with integrability-breaking perturbations
[45,46]. The TFIM has several limits that provide intuition
about how s source should behave in general. The first limit
of interest is deep in the ferromagnetic phase (h < J), where
the ground state at finite size is approximately a symmetric
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FIG. 1. Circuit diagrams for the s source renormalization proce-
dure. (a) A single layer of the circuit which takes an 8-spin ground
state (the large black box) and 8 ancillae (small black boxes) and
after applying the turn “on” (yellow) and turn “off” (blue) unitaries
produces an approximation to the 16-spin ground state. (b) A two-
superlayer circuit which starts from the 4-spin ground state and
produces an approximation to the 16-spin ground state; each block
outlined by a red dashed line represents a superlayer made up of two
on and two off layers.

Greenberger-Horne-Zeilinger (GHZ) state, i.e., (|↑ . . . ↑〉 +
|↓ . . . ↓〉)/

√
2 (as opposed to the symmetry-broken state such

as |↑ . . . ↑〉 that one would typically consider in the thermo-
dynamic limit). Building a GHZ state from a product state
with local gates requires a circuit of extensive depth, but with a
size L GHZ input the size 2L GHZ state can be prepared using
a single layer of nearest-neighbor controlled-NOT (CNOT)
gates. Similarly, the exact finite-size ferromagnetic ground
state at finite magnetic field is another simple example of
a state with long-range entanglement that cannot be built
from a product state with a finite depth circuit. One would
expect the same to be true of a gapped ground state with
nontrivial topological order: while we would have no hope of
building such a state with a low-depth circuit from a product
input, an s source input could allow one to construct a good
approximation.

In contrast, the paramagnetic phase (h > J) is easier to
approximate with a product state input. Deep in the phase the
ground state is almost a product state, and the correlations that
do exist are short range. Using an s source input naturally
doubles the length scale of those correlations and, thus, to

1
−

E
/E

0

g g

FIG. 2. (a) Relative energy error and (b) infidelity of the TFIM s
source ground state as a function of g for several system sizes. Both
go to 0 deep in either phase as one would expect, but there is also a
local minimum at the critical point due to the scale invariance of the
system. (c) Relative energy error and (d) infidelity for Lf = 64 with
with either the normal s source input (s = 1) or product state input
(s = 0). Using a product input state gives better energies deep in both
phases, but has an infidelity over 0.5 in the ferromagnetic phase as
long-range entanglement cannot be generated. By either metric, s =
1 input gives substantially smaller errors near the critical point.

build the ground state one has to first remove those unwanted
correlations before building the desired ones back in; for a
product state input, we would only have to do the latter. Even
if the s source constructed state has low error, our effort is
wasted; we could have done even better with less work by
starting with a product state.

The most interesting case is at the critical point. Here,
we generically observe a local minimum in the error as a
function of the transverse-field strength (Fig. 2). In some
ways this is quite surprising; the existence of the analytic s
source construction relies on the adiabatic theorem, which in
turn requires a gap. Of course, there will always be a gap
due to finite system size; however, one naively expects that
such a small finite-size gap would force one to use a longer
adiabatic evolution time, thus incurring larger Trotter errors
when approximating the adiabatic unitary with a local circuit.
However, the scale invariance of the TFIM critical point
makes it particularly amenable to approximation by s source.
At the critical point, the correlation length of the ground state
scales with system size, so when we insert ancillae and hence
trivially double the length scale of correlations, we actually
achieve the proper long-range entanglement structure. We
then correct the short-range details with the local circuit. We
note that the location of the error minimum remains at the
critical point even when one adds generic perturbations to
the TFIM, consistent with the expectation that this behavior
should generalize to other continuous phase transitions.

Our paper is organized as follows. In Sec. II, we give a
precise description of both the s source algorithm and our
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numerical implementation. In Sec. III, we benchmark our
numerical implementation by applying it to several standard
1D spin chain models: first, the (integrable) transverse-field
Ising chain (TFIM), next, the TFIM with a longitudinal field
which is nonintegrable and has no symmetries, and finally the
TFIM with a symmetry-preserving but integrability-breaking
term. In Sec. IV, we develop some analytic understanding
of the circuit in the large-gap limit. Finally, in Sec. V, we
summarize our results and discuss potential future directions
of study.

II. s SOURCE ALGORITHM AND NUMERICAL
IMPLEMENTATION

In the s source framework, we regard the entanglement
present in the ground state at linear system size L as a resource
for constructing the ground state at system size 2L. Rather
than attempting to directly prepare the macroscopic ground
state of a model Hamiltonian, we suppose we are given s
copies of the ground state at system size L, and design a circuit
which doubles the system size. That is, we seek a unitary map
which produces the ground state at size 2L from s copies of the
ground state at size L times a collection of factorized ancillary
qubits. Iterating this doubling procedure yields a circuit which
produces the ground state in the thermodynamic limit from
s copies of the (easily determined) ground state of a small
cluster of sites. We note, as previously discussed, that such
a size-doubling map can exist even when the state represents
a nontrivial phase and cannot be constructed from a product
state via a low-depth local unitary circuit.

Our numerical implementation will focus on s source with
s = 1. When the Hamiltonian is gapped, one can immediately
write an expression for the s source unitary using the adiabatic
theorem. Let H̃L be the operator that acts as HL on the odd lat-
tice sites only. Now, consider a time-dependent Hamiltonian
H (t ) which interpolates between

H (0) = H̃L −
∑
i even

Xi (2)

and

H (T ) = H2L. (3)

Here, Xi are operators which put the ancillary qubits into a
product ground state. The unitary operator which generates
this time evolution is then

U = T e−i
∫ T

0 H (t )dt . (4)

Of course, if we could generally compute the full adiabatic
unitary explicitly, we could also solve the easier problem
of just finding the exact ground state at system size 2L!
We can, however, imagine Trotterizing this unitary to get
an approximation built out of local unitaries that is tractable
enough to make further progress. When the gap is large, we
can find these component local unitaries analytically, as we
explore in Sec. IV A.

For the moment, however, we observe that even without ac-
tually doing the time-ordered integral, one can see upon which
spins the local unitaries act; the terms in the leading order of
the Trotter expansion will act on the same spins as do terms
in either HL or H2L. Since we will work with nearest-neighbor

Hamiltonians, one can think of the terms coming from H2L as
turning on interactions between the spins of our original L site
system and the ancillae (which are now nearest neighbors after
the interleaving step), and we can interpret the terms coming
from HL as turning off interactions between the original
spins (which are no longer nearest neighbors). Keeping these
leading-order terms, we get an approximate tensor network for
U as shown schematically in Fig. 1(a). Although we justify the
circuit structure perturbatively, we will see from our numerics
that it is still capable of generating approximate ground states
even when a perturbative expansion would not converge. The
order of the layers is in principle arbitrary, although some
choices are more computationally efficient than others. We
also note that one could choose to Trotterize into larger
blocks and that doing so would improve the approximation
in exchange for circuit optimization becoming much more
computationally expensive. Later, in Sec. IV B, we will see
exactly how introducing longer-range blocks reduces errors
deep in either phase of the transverse-field Ising model.

In our numerical implementation, we treat the tensor net-
work as a variational Ansatz built out of arbitrary unitaries.
We minimize 〈H2L〉 over those component unitaries to get an
approximation for |ψ2L〉. As the reader may have noted, the
circuit that we end up obtaining is, in fact, a MERA, albeit
one with a particular circuit structure and where we have cut
off some number of layers at the smallest scale. However, we
are thinking of this MERA as being “upside down”; rather
than starting with a large state and repeatedly coarse graining,
we start with a small state and scale up.

There is a fundamental tension between making the adia-
batic evolution time T larger to reduce adiabaticity errors and
making T smaller to reduce Trotterization errors for a fixed
depth circuit. This tension disappears in the extreme limit of a
large gap wherein we can determine U analytically, as we will
describe in Sec. IV A.

We now describe the actual circuit Ansatz used, and explain
how we numerically optimize it to find an approximate ground
state. Suppose we have a solution for the ground state of H
for an L spin system |ψL〉 in matrix product state (MPS) form.
We construct the 2L spin input state |φ2L〉 by identifying spin i
(1 � i � L) of the L particle system with spin 2i − 1 of the 2L
spin system, and then placing ancillary spins on the remaining
sites. We note that the orientation of these ancillae does not
matter as any single spin rotation can be absorbed into the
circuit. Next, we construct a quantum circuit described by
a total unitary UT . We build this circuit in four layers: (i)
applying two spin unitaries U i

A to each pair of spins (2i −
1, 2i) for 1 � i � L, (ii) applying unitaries U i

B to pairs of
spins (4i − 3, 4i − 1) for 1 � i � L/2, (iii) applying unitaries
U i

C to pairs (2i + 1, 2i) for 1 � i � L − 1, and finally (iv)
applying U i

D to pairs (4i + 1, 4i − 1) for 1 � i � L/2 − 1.
The unitaries U i

A and U i
C correspond to turning on the new

couplings between the original L spins and the ancillae, and
the unitaries U i

B and U i
D and correspond to turning off the

couplings between the original spins. A schematic of this
setup for L = 8 can be seen in Fig. 1(a). We can also repeat
this procedure multiple times, successively inserting ancillae
and then applying four layers of the circuit (which we will
henceforth call a “superlayer”) to repeatedly double the size
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of the input state. As an example, a two-superlayer circuit is
illustrated in Fig. 1(b).

In order to numerically optimize the circuit, we minimize
the energy E = 〈ψ̃2L|H2L|ψ̃2L〉 where |ψ̃2L〉 = UT |φ2L〉. In
particular, we begin with an initial circuit (which could either
be a random circuit or an educated guess) and then consider
E to be a function of each of the individual local unitaries
comprising UT . We then sweep over all of these component
unitaries multiple times using the conventional MERA update
procedure described in [30]. For the interested reader, we pro-
vide some additional details about the numerical optimization
in Appendix A.

As mentioned above, this optimization procedure generally
only finds a local minimum of the energy; if one wants to
reliably find the global minimum, it is necessary to do this
variational search many times with different initial conditions.
To optimize a multilayer circuit, we pursue a greedy algo-
rithm: for each superlayer, we minimize the expectation value
of H2L over the unitaries in the L to 2L layer with all preceding
layers held fixed. The intuition behind this approach is that
the adiabatic construction should in principle guarantee the
existence of a multilayer circuit such that its first k superlayers
generate the ground state at size 2kL. To be more precise,
if we consider the analytic construction where we have the
exact quasilocal adiabatic unitaries at our disposal, we know
that one can construct the state |ψ4L〉 from |ψL〉 by applying
the adiabatic unitary U L→2L to get |ψ2L〉 and then U 2L→4L to
get |ψ4L〉. This suggests that a greedy approximation of each
layer could in principle be effective. Of course, reoptimizing
all superlayers at each scale is at least as accurate and in
some cases may yield much lower errors. However, full circuit
optimization comes at a significant computational cost, and
we find that the greedy approach performs surprisingly well.
Before presenting our numerical benchmarking results, we
wish to emphasize that our approach, following the s source
philosophy, attempts only to find an optimal adiabatic trajec-
tory, namely, one which utilizes information from previous
layers. In particular, we do not attempt a global energy mini-
mization, as with standard MERA optimization schemes.

III. NUMERICAL BENCHMARKING RESULTS

To benchmark our numerical implementation we consider
three 1D models: the transverse-field Ising model (TFIM), a
mixed-coupling Ising model (MCIM), and a mixed-field Ising
model (MFIM), with Hamiltonians

HTFIM = −J
∑
〈i j〉

σ z
i σ z

j − h
∑

i

σ x
i ,

HMCIM = −
∑
〈i j〉

(
Jxσ

x
i σ x

j + Jzσ
z
i σ z

j

) − h
∑

i

σ x
i ,

HMFIM = −J
∑
〈i j〉

σ z
i σ z

j −
∑

i

(
hxσ

x
i + hzσ

z
i

)
. (5)

The TFIM sets our baseline understanding for how s =
1 s source performs in three limits: a short-range cor-
related unique ground state (the paramagnetic phase), an
almost-degenerate long-range correlated ground state (the
ferromagnetic phase), and at a critical point.

We quantify our implementation’s performance using both
the relative error in energy (which we minimize) and the
many-body infidelity, i.e., the overlap mismatch between the
s source state obtained at size 2L and the “exact” DMRG
wave function at the same size 1 − |〈ψ̃2L|ψ2L〉|2. As a point
of reference, we compare this performance to that of s = 0 s
source, optimizing the same circuit structure with a product
state input. We also study the consequences of truncating
our approximation of the quasilocal unitary to include only
nearest-neighbor gates. Finally, in order to understand the
propagation of errors in our numerical s source algorithm, we
analyze the performance of multilayer circuits.

Benchmarking via the TFIM model. Since the TFIM is
integrable, in this case, we calculate energy errors relative
to the exact values. For the MCIM and MFIM models, we
benchmark against energies obtained via DMRG. In addition,
we use DMRG to generate our initial input MPS states for s
source for all three models (restricting to a specific Z2 parity
sector when appropriate). In Fig. 2(a), we plot the relative
error in energy for a single layer of s source for the TFIM
as a function of g = h/J for several values of the input system
size L0. To be specific, this means that we start with the ground
state at L0 and perform a single layer of our s source algorithm
to obtain an approximate ground state at Lf = 2L0, whose
energy we then compare with the exact value. Similarly,
Fig. 2(b) depicts the many-body infidelity, which exhibits the
same qualitative behavior. In all of our numerics, we ensure
that the input state in the ferromagnetic (g < 1) phase is the
non-symmetry-broken ground state.

As one expects, the error decreases deep in either the
ferromagnetic or paramagnetic phase. Indeed, because the gap
is large in these regions, there must exist a suitable s source
adiabatic unitary that minimizes both nonadiabatic and Trotter
errors. Less expected, from this adiabatic perspective, is the
existence of a local minimum in the error at the TFIM’s
critical point g = 1, despite the fact that the gap vanishes at
this point. Naively, one might have expected that this would
lead to an error maximum instead. In fact, this is exactly what
does happen if we start with a product state input (s = 0)
instead of the s = 1 s source input state, as can be seen in
Fig. 2(c).

To understand this s = 1 local minimum, we note that
the correlation length diverges at the critical point and it
is impossible to capture these correlations starting from a
product state and using a low-depth local quantum circuit.
However, if we start with the size L ground state (as we
do in s = 1 s source), then correlations of length L become
correlations of length 2L upon ancillae insertion. In principle,
at the critical point, this is exactly what we desire from the
size 2L ground state; we emphasize once again that this is
precisely the same intuition which underlies MERA and that
our circuit is in fact a type of MERA with a “cutoff” at small
scales.

To further check this intuition, we can define a single-site
energy error for the TFIM as

ε(i) = −J

2

(
σ z

i−1σ
z
i + σ z

i σ z
i+1

) − hσ x
i , (6)

and then take a Fourier transform to define a momentum-
resolved energy error ε(k). Doing this, we found that the
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momentum-resolved error was only significant for momenta
of k = 0, π/4, and π/2 (k in units of inverse lattice spac-
ing). The k = 0 component is just the total energy error,
whereas the k = π/4 and π/2 components correspond to
errors of characteristic length scale 2 and 1 lattice spacings,
respectively. These are, of course, exactly the length scales at
which the nearest-neighbor and next-nearest-neighbor gates
comprising our circuit act. There is no corresponding dip in
ε(k = π/4) or ε(k = π/2) at the critical point, consistent
with our understanding that the dip in the overall energy error
really is due to ancilla insertion and not the local action of the
circuit.

While this built-in doubling of input correlations is benefi-
cial at criticality, it can be detrimental in other regimes. This
can be seen by comparing the performance of s = 1 s source
with s = 0 s source deep in the paramagnetic phase [g > 1
in both Figs. 2(c) and 2(d)]. While both errors are scaling
toward zero as g increases, the scaling is worse for the s = 1
input. Here, the true ground state is short-range correlated,
approaching a product state for large g. Thus, constructing the
size 2L ground state with an s = 1 input actually involves first
getting rid of all the doubled correlations.

Looking only at energy errors [Fig. 2(c)], the above state-
ment would also appear to apply deep in the ferromagnetic
phase (g < 1). However, the many-body infidelity tells a
different story. In particular, although the energy errors for
s = 0 s source scale better than s = 1 s source, the fidelity
does not [Fig. 2(d)]. To understand this behavior, we note that
at g = 0, the ground state manifold of the TFIM is twofold
degenerate, consisting of the symmetric and antisymmetric cat
states. For finite but small g, these states will be split in energy
by an exponentially small gap ∼gL. Until g is nearly one, any
linear combination of these two states will have approximately
the same energy, and an “all up” like combination can be
constructed from a product state input to give a low energy
error. However, it is impossible to construct a cat state from a
product state using a circuit with subextensive depth.

As a result, the infidelity of the s = 0 state is always
greater than 0.5 throughout the entire ferromagnetic phase,
as the zeroth-order piece of the true ground state cannot be
constructed. In contrast, with an s = 1 input state, a size
L cat state can be used to create a size 2L cat state by
using controlled-NOT gates between each pair of original and
ancilla spins. We expect that this behavior should generalize
to certain classes of topological states. In particular, because
one cannot change a topological invariant by acting with local
unitaries, it is impossible to build such states from a product
state input. On the other hand, using an s = 1 input preserves
the topological character of the state.

Next, we turn to studying the effect of changing the range
of the quasilocal unitary approximation by restricting our
circuit to include only nearest-neighbor gates. A comparison
of the resultant energy errors and infidelities is shown in
Fig. 3. The nearest-neighbor circuit still exhibits a local error
minimum at the critical point, and in fact nearly achieves
the accuracy of the longer-ranged s source circuit there.
This implies that the long-range correlations built in via
ancillae insertion and the ability to perform nearest-neighbor
corrective gates are the most important features for accurately
constructing a state at the critical point. Moving away from

g

1
−

E
/E

0

g

FIG. 3. (a) Relative energy error and (b) infidelity of the TFIM
for both the “standard” s source circuit with both nearest-neighbor
(NN) and next-nearest-neighbor (NNN) unitaries and a simplified
circuit with only NN unitaries, both for Lf = 64. The general shape
of the error curves, notably including the local minimum at the
critical point, is similar for both circuits. The NN circuit does almost
as well as the NNN circuit at the critical point, but the errors fall off
more slowly than for the NNN circuit deep in either phase.

the critical point, one sees the advantage of the next-nearest-
neighbor circuit geometry; we will show in Sec. IV that the
range of individual gates in the circuit determines the scaling
of the error with g deep in either phase.

Multilayer s source. Our preceding discussion focuses on
single-layer s source, where one starts with a size L0 input
state and ends with a size L f = 2L0 final state. In multilayer
s source, we start from a size L0 state and perform the s
source construction n times to get an approximate size L f =
2nL0 state; we use the approximate state from one superlayer
as the input state for the next. As aforementioned, in our
numerics, we take a “greedy” approach where we optimize
each superlayer in isolation rather than sweeping back and
forth. In principle, simultaneously optimizing superlayers
should improve accuracy, but it would come at a substantial
computational cost.

Figure 4 depicts the energy errors for multilayer s source
for the TFIM as a function of both L0 and L f . Although it
is difficult to make sharp statements, it appears that errors
are not accumulating, per layer, superlinearly. We hypothesize
that the multilayer error obeys the following bound: EL→4L �
EL→2L + E2L→4L, where EL0→L f is the relative energy error for
the optimal L0 to L f s source state. The analogous statement
for accumulated infidelities holds trivially (if one were to
optimize the s source circuit by minimizing infidelity instead
of energy). In Fig. 4(c), one can see that this proposed bound
appears to hold for a two-superlayer circuit.

Nonintegrable models. Finally, we now turn to applying the
single-layer s source algorithm to the nonintegrable MCIM
and MFIM models. In Fig. 5, we begin by showing the
energy errors as a function of input size for the MCIM model.
The qualitative features of the error curve are analogous to
what we have already discussed in the TFIM case; the error
decreases deep in either phase, and there is still a local
minimum in the error at the phase transition. This minimum is
consistent with our prior expectations since the critical point
of the MCIM is still described by a conformal field theory. In
Fig. 6, we plot the energy errors for a number of different
longitudinal field strengths for the MFIM model. As hz is
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g

1
−

E
/E

0

g g

FIG. 4. Relative energy error in the TFIM for multilayer circuits. (a) Error comparison, starting with L0 = 8 for one- and two-layer circuits.
(b) Error comparison ending with Lf = 32 for one- and two-layer circuits. Error compounds reasonably with successive layers, and in particular
is not much worse than single-layer optimization at the critical point. (c) We hypothesize that the multilayer error is subadditive, as illustrated
here. Except where we have failed to find the global minimum, the L0 = 8 to Lf = 32 error is bounded by the L0 = 8 to Lf = 16 error plus the
L0 = 16 to Lf = 32 error, with the multilayer circuit substantially outperforming this bound at the critical point.

increased, the local minimum flattens out and then vanishes,
consistent with the lack of a scale-invariant point.

IV. ANALYTIC ANALYSIS OF ERRORS

A. Analytic tensors in the large field limit

Our effort to express the adiabatic s source unitary as a
local, low-depth circuit faces two competing constraints. In
order to have a good approximation, we need to be able to
use both the adiabatic theorem (which requires that T −1 be
small compared to the gap) and the Trotter decomposition
(which requires that T −2 be large compared to commutators
between different blocks of the Hamiltonian). In particular,
in the large h/J limit of the TFIM, one can satisfy both of
the above constraints. By moving into the interaction picture
and expanding the time-ordered exponential to leading order,
we find (see Appendix B for details) that the nearest-neighbor

h/Jz

1
−

E
/E

0

FIG. 5. Relative energy error for the mixed coupling Ising model
with Jx = 0.1Jz. The features of the error curve are qualitatively
similar to the transverse-field case, and the local minimum remains
at the model’s critical point.

(“on”) unitaries are (Fig. 1), to leading order in h/J , given by
U = e−iHeff , where

Heff = − J

8h

(
σ 1

z σ 2
y + σ 1

y σ 2
z

)
. (7)

Similarly, the next-nearest-neighbor (“off”) unitaries (Fig. 1)
are given by U = eiHeff with the same Heff .

One can perform the same calculation in the mixed
field/coupling models. Defining h = √

h2
x + h2

z and tan η =
hz/hx, we obtain an effective Hamiltonian

Heff = α
(
σ 1

x σ 2
y + σ 1

y σ 2
x

) + β
(
σ 1

y σ 2
z + σ 1

z σ 2
y

)
, (8)

where

α = Jx

32h
(7 sin η + 3 sin 3η) − 3Jz

8h
cos2 η sin η,

β = 3Jx

8h
cos η sin2 η − Jz

32h
(7 cos η − 3 cos 3η) (9)

hx/J

1
−

E
/E

0

FIG. 6. Relative energy error for the mixed-field Ising model for
Lf = 64. For sufficiently large hz, there is no longer a local minimum
in the error as there is no scale-invariant point.
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and again the “on” and “off” unitaries are given by U = e−iHeff

and eiHeff , respectively.

B. Perturbative analysis

In this section, we will use a perturbative analysis to ex-
plore how the error of the optimal s source circuit varies with
our system parameters. In our numerics, we are ultimately
using a variational (in energy) method to solve for the circuit;
thus, one cannot analytically calculate the error directly, but in
a perturbative regime, we can compute how the leading-order
correction to the s source wave function scales. As a bonus,
this procedure naturally suggests additional tensors one could
include in the circuit to further suppress errors. Although
including such tensors would come with a computational cost
for our numerical implementation, it is possible that they
could be more natural for certain experimental geometries
where long-range interactions are present [47–51].

Here, we present the results of this analysis for the TFIM.
Our basic strategy is to first figure out the exact s source
circuit at a fixed point (i.e., either h/J = 0 or J/h = 0), and
then to perturb around this fixed point. In other words, once
we factor out the fixed-point portion, we will parametrize
each unitary in the circuit as exp(−iH ) = I − iH + · · · with
‖H‖ = O(h/J ) or O(J/h). We then consider whether there
exists such a circuit that will take our initial state to the target
state correctly to a given order in perturbation theory.

For the J/h = 0 fixed point (with ancillae inserted in the
direction of the field), the s source circuit is simply the identity
and reproduces the size 2L ground state perfectly since both
|ψL〉 and |ψ2L〉 are product states. Deep in the paramagnetic
phase, we can construct the correct size 2L ground state to
linear order in J/h, and in fact, the circuit we use to do
so is precisely based on the analytic unitaries found in the
previous subsection. The leading-order errors that remain are
pairs of spin flips at sites 4i and 4i + 4 with coefficients of
order (J/h)2.

If we modify our circuit to contain two spin unitaries acting
on pairs of spins located four sites away, we can construct
the state correctly to order (J/h)2. More generally, if one
continues to add unitaries up to distance 2n, one can faithfully
construct the state to order (J/h)n. The strategy is to first
remove unwanted terms to bring the state back to the J/h = 0
state and then to build in the needed terms. Both distance n
and 2n gates are required, the former to create the needed
nth-order terms, and the latter to remove unwanted nth-order
terms introduced when we add the ancillae. Furthermore, the
effective Hamiltonians that parametrize these unitaries will
be exponentially weak in distance, so the overall unitary
will indeed be quasilocal as expected. Consistent with our
numerical results, starting with a product state rather than
the size L ground state allows us to do better; in particular,
we will only need distance n gates in order to be correct to
order (J/h)n since there are no unwanted terms to remove.
We emphasize that this intuition is only true for sufficiently
small J/h.

In the ferromagnetic phase things are a bit more subtle.
We will denote the ground state which is “connected” to
the symmetric cat state at h = 0 as |ψL

0 〉 (even parity) and
the analogous state which is connected to the antisymmetric

cat state as |ψL
1 〉 (odd parity). The energy splitting between

these states will scale like (h/J )L. Were we to only care
about energy errors, we might reasonably consider any lin-
ear combination of |ψ2L

0 〉 and |ψ2L
1 〉 to be our target state.

However, we know that one cannot turn a product state into
a cat state or vice versa with a circuit of subextensive depth.
As previously discussed, at h/J = 0 one can go from a cat
state input to a cat state output by inserting the ancillae in
the | ↑〉 state and using CNOT gates for the bottom layer of
the circuit. Thus, if our starting state is |ψL

0 〉, then our target
state will be |ψ2L

0 〉. We could also consider starting with either
a product state or the symmetry-breaking linear combination
(|ψL

0 〉 + |ψL
1 〉)/

√
2 and building toward (|ψ2L

0 〉 + |ψ2L
1 〉)/

√
2;

in this case the circuit at h/J = 0 is the identity. If we insist
that the target is |ψ2L

0 〉 and begin with a product state input, it
is impossible to be correct to even zeroth order.

To this end, with the standard circuit [Fig. 1(a)], one
can prepare |ψ2L

0 〉 correctly only to O(1), whereas for the
symmetry-broken or product inputs we can prepare (|ψ2L

0 〉 +
|ψ2L

1 〉)/
√

2 correctly to order h/J . The leading-order error in
the former case comes in the form of double-spin flips on each
of the two product states that make up the cat state. Using
a three-site unitary with the third spin acting as a control
would let us correct this error and prepare the true ground
state correctly to order h/J . Similarly, blocks of 2n + 1 sites
will allow us to correctly prepare the state to order (h/J )n by
eliminating correlated 2n spin-flip errors. In contrast with the
paramagnetic phase, where the long-distance unitaries only
needed to act on two sites, here the gates need to act on all
of the sites within a block.

When targeting the symmetry-broken state, the standard
circuit will give us the correct answer to order h/J for both
the product state and symmetry-broken inputs. However, to
correct higher-order errors using (|ψL

0 〉 + |ψL
1 〉)/

√
2 as an

input requires (2n + 1)-site unitaries to obtain the correct
result at order (h/J )n+1; the analogous situation with a product
state input requires n-site unitaries to be correct to order
(h/J )n. In all cases, the strengths of the required unitaries
fall off exponentially with the diameter of the block, and the
overall circuit is once again quasilocal.

V. DISCUSSION AND CONCLUSION

In this work, we have developed a numerical implementa-
tion of the s source algorithm for finding approximate ground
states of local Hamiltonians [38]. We approximate the lattice-
doubling unitary of the s source algorithm as an efficiently
contractable tensor network, which we in turn variationally
optimize to minimize the energy of the doubled-lattice ground
state. To ensure our tensor network is efficiently contractable,
we construct it from local rather than quasilocal components,
although this decreases the accuracy of the approximation.
We benchmark the resulting numerical algorithm on several
1D spin chain models, and find that the s source construction
works particularly well at scale-invariant critical points. We
ascribe this to the fact that ancillae insertion doubles the
length scale of all correlations in the input state, much in
the same spirit as MERA. In addition, to gain some analytic
intuition, we computed the scaling of the wave-function errors
deep in each phase of the TFIM, and determined how the
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s source circuit could be modified to correct these errors.
These corrections are consistent with the expectation that
performing s source with a quasilocal unitary should permit
the exact construction of the doubled-lattice ground state.

Our work suggests several interesting directions for future
study. First, one could use multilayer s source as a numerical
method to extract information about renormalization group
flow. When creating a multilayer s source circuit, one obtains a
sequence of unitaries U1, U2, ..., Un that each double the size of
the system. By parametrizing how this sequence of unitaries
changes, it should be possible to follow the renormalization
group flow and to extract quantities such as the operator di-
mension. In a similar vein, since the Hamiltonian parameters
also flow, one might expect that the ideal input state to build
|ψ2L(g)〉 would not be |ψL(g)〉 but rather |ψL(g′)〉, where the
Hamiltonian parameter g′ at length L flows to g at length 2L.
Allowing for this may significantly improve the performance
of s source away from criticality.

While we do not foresee s source outperforming estab-
lished methods like DMRG in determining 1D ground states,
it may be useful for constructing ground states in 2D where
existing methods leave more room for improvement. Fur-
thermore, the algorithm could be naturally adapted as an
experimental method for preparing ground states.

In fact, the ability to interleave ancillae has recently be-
come possible in Rydberg optical tweezer arrays [50–52].
An experimental implementation of s source would be par-
ticularly useful for generating states with long correlation
lengths. Indeed, as we have previously discussed, strongly
correlated many-body states often require deep quantum cir-
cuits in order to be built from product states. Absent error
correction, deep circuits result in low fidelities due to com-
pounding gate errors. Thus, the ability of s source to create
certain classes of strongly correlated states with low-depth
circuits could provide a significant advantage in the noisy
intermediate scale quantum (NISQ) era [53]. Finally, although
the numerical implementation we explore here is variational,
the s source formalism provides a compelling connection to a
nonvariational ground state construction which merits future
exploration.
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APPENDIX A: CIRCUIT OPTIMIZATION

Finding a quantum circuit that prepares a minimum energy
eigenstate is a challenging problem [55,56]. In the generic
case, we cannot deterministically find the optimal circuit or
even verify that a given circuit does minimize the energy. We
can, however, perform a variational search by starting with
some circuit and then iteratively updating component tensors
in order to continually lower the energy, as is common practice
for MERA.

Within a superlayer of the s source circuit, we optimize
each local unitary u while holding all others fixed. We then
iterate this procedure for all u in the superlayer until the
energy has converged. To update a single unitary, we utilize
the optimization strategy outlined in [30]. To summarize, we
pretend that the function we are trying to maximize, f (u) =
−〈H〉, is a linear function of u. Of course, it is actually
quadratic, as u† is present in the dual circuit. If we treat u†

as constant, however, we can write f (u) = Tr(W †u), where
the environment W † of u is found by contracting the tensor
network formed by removing u from −〈H〉’s tensor network.
If W has singular value decomposition W = XY Z†, it follows
that a linear function f (u) achieves its maximum at u = XZ†.

For a nonlinear function of u, one should in principle
update u multiple times until the energy converges. In prac-
tice, we only update each tensor u once during a full sweep
of the superlayer; we have empirically found that this leads
to a lower energy for a fixed total number of updates. We
also tested an alternative optimization strategy referred to as
“Linearization II” in [57], but this required using 10 updates
per unitary per superlayer sweep for numerical stability, as
well as tuning additional hyperparameters. We did not see any
benefit of this approach for fixed computational cost.

As one might expect, this update procedure generally only
finds a local energy minimum, not a global one. In order to
get the global minimum, we perform this optimization many
times over circuits initialized with Haar-random unitaries. The
cost of simulation is linear in the number of samples, which
can be large, so we note a few tricks that will improve either
the speed or performance of optimization (although sampling
over initializations is embarrassingly parallel).

First, we note that only a subset of the terms in the
Hamiltonian will be within the light cone of a given u, so
we only need to minimize the partial energy containing those
terms when we update u. Crucially, the number of terms that
contribute is constant as a function of system size, whereas the
number of terms in the full Hamiltonian scales as L. We also
note that each optimization step does not, generally, decrease
the energy. For a quadratic function of a given u this procedure
will actually maximize the absolute value of the function. In
order to avoid this complication, we alter the spectrum of the
(partial) energy we are minimizing to be negative definite by
shifting the partial Hamiltonian by an appropriate multiple
of the identity [29]: ĥ → ĥ − αI , where α is the maximum
eigenvalue of the partial Hamiltonian ĥ. In practice, we find
that we only need to do this for a few sweeps before all partial
energies are negative, at which point we turn the shift off as it
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seems to slow down convergence (this suggests the possibility
that shifting the spectrum up could speed up convergence as
long as we are careful to keep things negative definite).

We now describe some heuristics for efficient contraction
of the next-nearest-neighbor s = 1 s source circuit. Suppose
we want to evaluate the expectation value of a term in the
Hamiltonian

〈Ô〉 = 〈ψL|U †
1 . . .U †

n ÔUn . . .U1|ψL〉, (A1)

where Ui is the ith superlayer of a multilayer s source circuit.
We start with the operator Ô (which is defined on the 2nL
site lattice) and then, in the language of MERA, act upon
it with the ascending superoperator [30] (in other words, we
conjugate by the innermost superlayer of the circuit). If Ô was
supported on at most six adjacent sites, the ascended version
of O will be supported on either four or six adjacent sites on
the 2n−1L spin lattice. This is because the causal cone extends
by at most six sites, and contracting with the ancillae halves
the support of the operator at the end.

We emphasize that we can ignore contraction with any
gate in Un outside of Ô’s causal cone since it will contract
with its inverse in U †

n to form an identity [30]. There is no
computational advantage to starting with a block of fewer
than four sites (or six sites if the block would be ascended
to a six-site block), so if we want to evaluate the sum of
expectation values of many operators, we should group them
into blocks of operators living on either four or six adjacent
sites. Doing so allows us to do a single contraction to find
the sum of the expectation values of several adjacent local
observables instead of multiple contractions to find the ex-
pectation value of each term separately. This reduces the time
it takes to evaluate the expectation value of the Hamiltonian
considerably. Repeatedly applying ascending superoperators,
we eventually obtain an operator defined on the L-site lattice,
which when contracted with the MPS and its dual will give
the desired expectation value.

It is advantageous to cache various partial contractions of
the MPS portion of the tensor network (i.e., 〈ψL| and |ψL〉).
In particular, at the final step of evaluating an expectation
value, we will contract the ascended Ô with four or six pairs
of adjacent physical indices of the MPSs, with all other MPS
indices already contracted. By storing all contractions of the
MPSs with four or six pairs of adjacent dangling bonds, we
can avoid repeating this costly computation. The evaluation
of the W †’s needed to optimize the circuit is done in much the
same way, simply omitting the contraction with the specific u
that is to be updated.

Energy minimization appears to take on the order of 1000
sweeps for the models we tested, with that number growing
slightly with system size. This also varies from run to run;
sometimes it might take 1000 sweeps, and sometimes it may
take 10 000. For most of the figures in this paper starting with
an initial state of 32 spins and creating an s source state of 64
spins we ran ∼1000 initializations with 1000 sweeps each and
took the best energy among them. For smaller systems, e.g., 8
to 16, we performed <100 initializations.

We note that for this work we were particularly interested
in characterizing the error of the s source algorithm, and as
such we needed to find the global minimum as reliably as
possible. For some other applications, one may be perfectly

content to have, say, twice the minimum error, in which case
it is not as necessary to run so many randomly initialized
optimizations. In this case one can often do pretty well by
starting with a good guess for the initial circuit, adding some
noise, and optimizing just a few initial states. For the TFIM,
a good guess may be the leading-order analytic solution that
we discuss in Sec. IV A, where noise is added by multiplying
each unitary by another random unitary close to the identity.
Here, we make two notes. First, with fewer parallel optimiza-
tions it is more important to do more sweeps for each one
(several thousand rather than one thousand, say). Second, it is
important to make sure that the initial condition of the circuit
is not entirely real, as updating a real valued circuit will keep
the circuit in the real manifold.

We note that further improvements are likely possible.
It seems, for example, that it should be possible to reduce
the average number of required sweeps by monitoring for
convergence. However, checking for convergence can be quite
deceptive here; one typically sees plateaus where the energy
appears to converge, and then sudden jumps down to new
local minima. A more careful analysis may reveal an effective
way to anticipate whether or not further sweeps will result
in an improved energy. In our experience, the energy would
sometimes continue to improve beyond 1000 sweeps, but it
was more efficient to sample more initial conditions than
execute more sweeps per sample.

Finally, the cost of contraction scales roughly exponen-
tially in the width of the circuit’s causal cone. In practice,
this might motivate the use of the simplified s source circuit
comprised of only the nearest-neighbor gates. We analyzed
this circuit in Sec. III and found that the energy error was
qualitatively similar to that of the circuit containing both
nearest-neighbor and next-nearest-neighbor gates, and was
quantitatively not much worse at the critical point.

APPENDIX B: DERIVATION OF ANALYTIC UNITARIES
FOR LARGE MAGNETIC FIELDS

Here, we derive the analytic expressions for the s source
unitaries of the TFIM in the limit h � J , previously described
in Sec. IV A. In this regime, we can simultaneously make the
adiabatic evolution time T long enough to be adiabatic, but
short enough that we can do a Trotter expansion. The former
condition requires, for h � J , hT � 1. In the interaction
picture that we will consider shortly, the Trotter expansion
requires JT � 1. We consider a single term in the Trotter
expansion of Eq. (4) and thus reduce the problem to consid-
ering two spins that are initially in a field of strength h in the
x direction and then turning on an interaction of strength J in
the z direction. If we slowly turn on the interaction over a time
T , then we have

H (t ) = H0 + t

T
H1 (B1)

with

H0 = −h
(
σ 1

x + σ 2
x

)
, (B2)

H1 = −Jσ 1
z σ 2

z . (B3)
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Then, the adiabatic unitary associated with moving from H0

to H0 + H1 is

U = T exp −i
∫ T

0
H (t )dt . (B4)

It is helpful for us to move to the interaction picture before
proceeding. Doing so gives us the interaction picture unitary

UI = T exp −i
∫ T

0

t

T
eiH0t H1e−iH0t dt

≈ 1 − i
∫ T

0

t

T
eiH0t H1e−iH0t dt . (B5)

Upon integrating and discarding higher-order terms, we get

UI = 1 + i

(
JT

4

(
σ 1

z σ 2
z + σ 1

y σ 2
y

)
+ J

8h
e−ih(σ 1

x +σ 2
x )T

(
σ 1

z σ 2
y + σ 1

y σ 2
z

)
eih(σ 1

x +σ 2
x )T

)
. (B6)

Moving back to the Schrödinger picture and continuing to
work to leading order,

U = e−iH0T UI = (e−iH0T UI e
iH0T )e−iH0T

= 1 + i

(
hT

(
σ 1

x + σ 2
x

) + JT

4

(
σ 1

z σ 2
z + σ 1

y σ 2
y

)
+ J

8h

(
σ 1

z σ 2
y + σ 1

y σ 2
z

))

= exp i

(
hT

(
σ 1

x + σ 2
x

) + JT

4

(
σ 1

z σ 2
z + σ 1

y σ 2
y

)
+ J

8h

(
σ 1

z σ 2
y + σ 1

y σ 2
z

))
= exp(−iHeff ) (B7)

which corresponds to an effective Hamiltonian

Heff = −hT
(
σ 1

x + σ 2
x

) − JT

4

(
σ 1

z σ 2
z + σ 1

y σ 2
y

)
− J

8h

(
σ 1

z σ 2
y + σ 1

y σ 2
z

)
. (B8)

We have not as of yet specified a value for T , so its presence
in our effective Hamiltonian may appear, at first glance, to
be troubling. However, we expect from the adiabatic theorem
that, as long as the assumptions are met, there should be no
strong T dependence. Indeed, one can explicitly verify that
in the limit T � J/h2 the effect of the T -dependent terms is
a phase shift. Dropping them, we end up with a particularly
simple form for Heff :

Heff = − J

8h

(
σ 1

z σ 2
y + σ 1

y σ 2
z

)
. (B9)

The “off” unitaries, on the other hand, are given by
exp (iHeff ). We can see this by considering running the process
backward in time. This is, of course, just the “turn on”
problem we just solved. There is one additional complication:
these unitaries are acting not on the ground state, but on
the first layer of the circuit. However, corrections due to the
noncommutation of the layers will come in at a higher order,
and since we are only working to first order anyway we can
simply ignore them.

We can repeat this analysis for a mixed coupling and field
Ising model. Here we have Hamiltonians

H0 = −hx
(
σ 1

x + σ 2
x

) − hz
(
σ 1

z + σ 2
z

)
(B10)

and

H1 = −Jxσ
1
x σ 2

x − Jzσ
1
z σ 2

z . (B11)

If we define h = √
h2

x + h2
z , tan η = hz/hx, and go through the

same steps, we find that to order J/h

Heff,XX = −JxT

32
(9 + 4 cos 2η + 3 cos 4η)σ 1

x σ 2
x − JxT

4
sin2 η σ 1

y σ 2
y − 3JxT

16
sin2 2η σ 1

z σ 2
z

− JxT

32
(2 sin 2η + 3 sin 4η)

(
σ 1

x σ 2
z + σ 1

z σ 2
x

) + Jx

32h
(7 sin η + 3 sin 3η)

(
σ 1

x σ 2
y + σ 1

y σ 2
x

)
+ 3Jx

8h
cos η sin2 η

(
σ 1

y σ 2
z + σ 1

z σ 2
y

)
, (B12)

Heff,ZZ = −3JzT

16
sin2 2η σ 1

x σ 2
x − JzT

4
cos2 η σ 1

y σ 2
y − JzT

32
(9 − 4 cos 2η + 3 cos 4η)σ 1

z σ 2
z

− JzT

32
(2 sin 2η − 3 sin 4η)

(
σ 1

x σ 2
z + σ 1

z σ 2
x

) − 3Jz

8h
cos2 η sin η

(
σ 1

x σ 2
y + σ 1

y σ 2
x

)
− Jz

32h
(7 cos η − 3 cos 3η)

(
σ 1

y σ 2
z + σ 1

z σ 2
y

)
, (B13)

with an overall effective Hamiltonian Heff = H0T + Heff,XX + Heff,ZZ. If we again drop the T -dependent terms, we get

Heff =
(

Jx

32h
(7 sin η + 3 sin 3η) − 3Jz

8h
cos2 η sin η

)(
σ 1

x σ 2
y + σ 1

y σ 2
x

)
+

(
3Jx

8h
cos η sin2 η − Jz

32h
(7 cos η − 3 cos 3η)

)(
σ 1

y σ 2
z + σ 1

z σ 2
y

)
. (B14)
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