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Improved Lieb-Robinson bound for many-body Hamiltonians with power-law interactions

Dominic V. Else,1,2 Francisco Machado ,3 Chetan Nayak,4,2 and Norman Y. Yao 3,5

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Department of Physics, University of California, Santa Barbara, California 93106, USA

3Department of Physics, University of California, Berkeley, California 94720, USA
4Microsoft Research, Station Q, University of California, Santa Barbara, California 93106, USA

5Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 18 October 2019; accepted 21 January 2020; published 26 February 2020)

In this paper, we prove a family of Lieb-Robinson bounds for discrete spin systems with long-range
interactions. Our results apply for arbitrary k-body interactions, so long as they decay with a power law greater
than kd , where d is the dimension of the system. More precisely, we require that the sum of the norm of terms
with diameter greater than or equal to R, acting on any one site, decays as a power law 1/Rα , with α > d . These
bounds allow us to prove that, at any fixed time, the spatial decay of a time evolved operator follows arbitrarily
closely to 1/rα . Moreover, we introduce an alternative light cone definition for power-law interacting quantum
systems which captures the region of the system where changing the Hamiltonian can affect the evolution of
a local operator. In short-range interacting systems, this light cone agrees with the conventional definition.
However, in long-range interacting systems, our definition yields a stricter light cone, which is more relevant
in most physical contexts.
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In a relativistic quantum field theory, information can
never travel faster than the speed of light. A Lieb-Robinson
bound [1–7] establishes a similar “light cone” for the spread
of quantum information in a nonrelativistic discrete system.
However, the information spread outside the light cone is
not strictly vanishing but, instead, has nonzero tails. Such
constraints on the spread of information, in addition to being
physically important in their own right, have also been used
as ingredients in the rigorous mathematical proof of key
results about nonrelativistic discrete quantum systems [2–4,8–
17], including the exponential decay of correlations in the
ground states of gapped Hamiltonians [2,3] and the stability
of topological order [4,13,14,16].

More recently, numerical and analytical works have inves-
tigated the existence of analogous Lieb-Robinson bounds in
discrete spin systems where interactions do not have a finite
range, but rather fall off as a power of the spin separation
[3,18–28]. Such long-range interactions arise in a wide va-
riety of experimental platforms, ranging from solid-state spin
defects [29–31] to quantum optical systems of trapped ions
[32], polar molecules [33], and Rydberg atoms [34]. While
the majority of previous studies have focused on few-body
physics, recent advances have enabled a number of these
platforms to begin probing the many-body dynamics and
information propagation of strongly interacting, long-range
systems [20,35,36].

Motivated by the development of these physical platforms,
in this paper, we improve Lieb-Robinson bounds for generic
power-law interactions. Specifically, let us consider a system
of spins on a set of sites � governed by a Hamiltonian H ,
which can be written as a sum H =∑Z HZ of terms acting
on subsets of sites Z ⊆ � in d-dimensional space. Moreover,
we assume (among other conditions described in Sec. I A) that

there exists a constant J such that

sup
z∈�

∑
Z�z:diam(Z )�R

||HZ || � J

Rα
, (1)

where diam(Z ) is the greatest distance between any two points
in Z . A familiar example [37,38] is the long-range Ising
interaction,

H = Hshort-range + J̃
∑
i �= j

1

|ri − r j |d+α
σ z

i σ z
j . (2)

An early result on Lieb-Robinson bounds in power-law in-
teracting systems was proved in Ref. [3], which demonstrated
the existence of a light cone whose size grows exponentially in
time for any α > 0. More recently, this result was improved in
Refs. [21,24], where it was shown that a power-law light cone
emerges for α > d , where d is the spatial dimension.

However, each of these results has certain limitations
(Table I). On the one hand, Ref. [21] assumes a two-body
Hamiltonian, where each term acts on at most two spins
[39]. This assumption limits the usage of this result in an-
alyzing multibody effective Hamiltonians of broad interest

TABLE I. Summary of power-law Lieb-Robinson bounds for
α > d . Note that the LC1 and LC2 columns describe the power-law
regime where these light cones exist and are power-law.

Multibody Asymptotic
Reference Hamiltonians spatial decay LC1 LC2

Ref. [21] ✗ r−(α+d ) α > d α > d
Ref. [24]

√
r−(α−d )/(η+1) α > d α > 2d

Our paper
√

r−α α > d α > d

2469-9926/2020/101(2)/022333(13) 022333-1 ©2020 American Physical Society

https://orcid.org/0000-0003-0068-5073
https://orcid.org/0000-0003-0194-7266
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.022333&domain=pdf&date_stamp=2020-02-26
https://doi.org/10.1103/PhysRevA.101.022333


ELSE, MACHADO, NAYAK, AND YAO PHYSICAL REVIEW A 101, 022333 (2020)

in condensed-matter physics. Such Hamiltonians can arise in
a number of different contexts: for example, ring-exchange
interactions may be important in solid 3He [40] and are
known to stabilize certain topological phases [41,42]; multi-
body Hamiltonians arise in explicit constructions of various
results in mathematical physics [9,13,14,17]; and higher-body
interactions naturally emerge in the effective description of
periodically driven two-body Hamiltonians [17,43].

On the other hand, while Ref. [24] overcomes this two-
body assumption, it proves a significantly weaker result
regarding the power-law decay of information outside the
light cone (Table I) [44]. In particular, for α � d , the bounds
of Ref. [24] ensure only a relatively slow decay outside the
light cone, which can limit its applicability to some important
results, e.g., bounding the difference in operators time evolved
under slightly different Hamiltonians.

In this paper, we prove a Lieb-Robinson bound that ad-
dresses both of the above concerns. We demonstrate that,
for multibody interactions with α > d , the spatial decay of a
time evolved operator, outside the light cone, scales arbitrarily
closely to ∼1/rα (Table I). While this bound is not as strong
as the ∼1/rα+d decay obtained in Ref. [21], our combination
of an improved scaling (over Ref. [24]) and applicability to
arbitrary multibody Hamiltonians enables the usage of this
Lieb-Robinson bound to prove new results in mathematical
physics [45].

An important comment is in order. Unlike either short-
range or exponentially decaying interactions, power-law in-
teractions are characterized by Lieb-Robinson bounds with
power-law tails which lack a natural notion of a length scale.
This implies that one must be particularly careful when defin-
ing an associated light cone for such long-range interacting
systems. One possible definition of a light cone (used in
Refs. [21,24]) is the following: at late times, the propagation
of a local operator to any one point outside the light cone
is small. From here on, we will refer to this as light cone
1 (LC1). For short-range interacting systems, LC1 is the
only length scale associated with time evolution. For power-
law interacting systems, one can already get a sense of the
insufficiency of LC1 by noting the following: despite the
differences between the asymptotic spatial decays obtained in
Refs. [21,24] and this paper (Table I), they all yield the same
LC1 (Table II).

To this end, we introduce a second light cone, LC2, which
properly captures these differences. In particular, LC2 ensures
that, at late times, the evolution of a local operator is not
affected by changes to the Hamiltonian outside of LC2. For
short-range interacting systems, LC1 and LC2 coincide, but
for long-range interacting systems they can be quite different.
More specifically, Ref. [21] exhibits a finite, power-law LC2
for α > d , while Ref. [24] only has a finite LC2 for α > 2d ,
despite both having the same power-law LC1. Intuitively, the
lack of an LC2 for 2d > α > d in Ref. [24] stems from the
aforementioned slow asymptotic spatial decay of quantum
information. This highlights the importance of our improved
decay; it enables us to prove our second main result, which
is the existence of a power-law LC2 for α > d for arbitrary
multibody Hamiltonians (Table I) [46].

This paper is divided into two main sections. In Sec. I,
we present an improved Lieb-Robinson bound for multibody

long-range interacting systems. In Sec. I A, we introduce the
necessary notation and assumptions used in its derivation.
We state the final bound in Sec. I B, and present its detailed
proof in Sec. I C. In Sec. II, we introduce the definition of an
alternative light cone (LC2), discussing its differences from
the light cone usually considered in the literature (LC1), as
well as its physical motivation and how it relates to previous
work. We conclude with a brief summary and discussion in
Sec. III.

I. IMPROVED LIEB-ROBINSON BOUND

A. Assumptions and notation

Our notation will be similar to that of Ref. [24]. We con-
sider a set of sites � with a metric d (x, y) for x, y ∈ �, and a
Hamiltonian H written as a sum of terms H =∑Z HZ , where
HZ is supported on the set Z ⊆ �. We extend the notation of
the metric to sets, denoting d (X,Y ) as the minimum distance
between any two elements of the sets X,Y ⊆ �, as well
as between sets and sites, denoting d (X, y) = d (X, {y}). We
define a function f (R) that captures the power-law decay of
interactions:

f (R) := sup
z∈�

∑
Z�z:diam(Z )�R

‖HZ‖, (3)

where

diam(Z ) = sup
x,y∈Z

d (x, y), (4)

and we assume there are constants J and α > d (the di-
mensionality of the system) such that f (R) � JR−α . We also
require that the sum of the operator norms of all of the terms
involving any site be finite:

C0 := sup
x∈�

∑
y∈�

∑
Z�x,y

‖HZ‖ < ∞. (5)

Finally, we assume certain conditions on the set of sites
� and its metric. Specifically, we assume that � can be
embedded in Euclidean space Rd , so that for each z ∈ � there
is a corresponding rz ∈ Rd , such that d (x, y) = |rx − ry|.
Moreover, we assume there is a smallest separation a such that
d (x, y) � a for any x, y ∈ � unless x = y. We choose to work
in units such that a = 1. Despite an emphasis on this class
of physically motivated sets of sites and metrics, the strategy
and arguments developed in this paper should extend to more
general � and d (x, y), as in Ref. [24].

Let us also define τH
t (O) as the operator O time evolved

according to the Heisenberg representation

τH
t (O) = eitH O e−itH . (6)

Throughout the paper we will use “C” to refer to any
constants that depends only on σ (the parameter introduced
in the statement of the theorem in the next section) and �. It
will not necessarily be the same constant each time it appears.

B. Statement of the main result

Theorem 1. Given the assumptions stated in Sec. I A,
let observables A and B be supported on sets X and Y ,
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respectively. Then, for any (d + 1)/(α + 1) < σ < 1,∥∥[τH
t (A), B

]∥∥ � ‖A‖‖B‖
{

2|X |evt−r1−σ + C1
G(vt )

rσα

}
, (7)

where r = d (X,Y ) and v = C2 max(J, C0). Moreover, there
exists a constant C3 such that

G(τ ) � C3(τ + τ 1+d/(1−σ ) )|X |n∗+2, (8)

where

n∗ =
⌈

σd

σα − d

⌉
. (9)

Here, all Ci are constants only dependent on σ and �.
By choosing σ arbitrarily close to 1 we obtain a decay of

the Lieb-Robinson bound that approaches ∼r−α for large r.

C. Proof

1. Iteration procedure

The main challenge in understanding the spread of a local
operator in long-range interacting systems is being able to
differentiate the contribution from strong “short” range terms
and the weak “long” range terms in a problem with no natural
length scale. As a result, there is no single separation between
short- and long-range terms of the Hamiltonian that yields
a strict bound. To this end, we develop a construction that
iteratively introduces a short scale [21,24], enabling us to
better account for the spatial decay of interactions in the
Hamiltonian and obtain an improved Lieb-Robinson bound.

As a starting point, we consider a truncated version of our
long-range Hamiltonian with a cutoff R, H�R:

H�R =
∑

Z:diam(Z )�R

HZ . (10)

At the end of our construction we can make R → ∞, recov-
ering the full Hamiltonian. Because H�R has finite range R,
a Lieb-Robinson bound for short-ranged Hamiltonians can be
applied. However, this is clearly not the optimal bound, as it
assumes all interactions of range up to R are equally strong,
ignoring their decay with range. Nevertheless, this provides
the starting point for our iterative process.

An outline of this procedure is as follows. At each iteration
step, the Hamiltonian H�R is split into a short- and a long-
range piece using a new cutoff R′:

H�R = H�R′ + HR′;R (11)

where HR′;R =
∑

Z:R′<diam(Z )�R

HZ . (12)

Then, following the strategy of Refs. [21,24], the time evolu-
tion of an operator A is separated into a contribution from the
short-range part H�R′

and the long-range part HR′;R. The role
of these two terms can be intuited by considering the long-
range part as a weak perturbation on top of the short-range
part: under evolution via H�R′

alone, the operator spreads with
a linear light cone as per short-range Lieb-Robinson bounds,
Fig. 1(a); the weak HR′;R part then leads to a faster spreading
by directly connecting this growing operator with the outside
of its light cone, Fig. 1(b).

This picture is made precise in Lemma 3.1 in Ref. [24],
where the total spread of the operator is bounded as a contri-
bution from the short-range part H�R′

, as well as an additional
contribution due to the long-range part HR′;R:∥∥[τH�R

t (A), B
]∥∥ � ∥∥[τH�R′

t (A), B
]∥∥

+ 2‖B‖
∫ t

0

∥∥[τH�R′

t−s (A), HR′;R]∥∥ds. (13)

This procedure enables us to better distinguish the contribu-
tion of the strong short-range terms and the weak long-range
terms of the evolution, improving upon the initial naive bound.
Once this iteration step is concluded and an improvement is
obtained, one can perform the procedure again, further reduc-
ing the contribution from the long-range piece of Eq. (13) and
improving the spatial decay of the Lieb-Robinson bound. We
note this iterative process recovers the argument of Ref. [24]
after one iteration; by iterating multiple times we can improve
on those results. We make this iterative construction more
precise with the following lemma.

Lemma 1. Fix a set X ⊆ � and a time t . Suppose that we
have a function λ(R)(r) such that for all 0 � s � t , Y ⊆ �, and
observables A and B supported on sets X and Y , respectively,
the bound ∥∥[τH�R

s (A), B
]∥∥ � λ(R)(d (X,Y ))‖A‖‖B‖ (14)

is satisfied. We assume that λ(R)(r) is monotonically increas-
ing in R and decreasing in r. Then, for any R′ > 0, Eq. (14) is
also satisfied with λ replaced by λ̃, defined according to

λ̃(R)(r) = λ(R′ )(r) + C�(R − R′) |X | t f (R′) I[λ(R′ )], (15)

where f (R) is given in Eq. (3); C is a constant independent of
R, R′, |X |, and t ; �(x) is the Heaviside theta function, and

I[λ] = λ(0) +
∫ ∞

1/2
ρd−1λ(ρ) dρ. (16)

Proof. For R′ � R, the result follows directly from the
monotonicity with respect to R. On the other hand, for R′ < R
we have, from Eq. (13),

∥∥[τH�R

t (A), B
]∥∥ � ∥∥[τH�R′

t (A), B
]‖ + 2‖B‖

∫ t

0

∥∥[τH�R′

t−s (A), HR′;R]∥∥ ds

�
∥∥[τH�R′

t (A), B
]∥∥+ 2‖B‖

∫ t

0

∑
Z:R′<diam(Z )�R

∥∥[τH�R′

s (A), HZ
]∥∥ ds

� λ(R′ )(d (X,Y ))‖A‖‖B‖ + 2t‖B‖
∑

Z:R′<diam(Z )�R

λ(R′ )(d (X, Z ))‖HZ‖‖A‖
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FIG. 1. The Lieb-Robinson bound captures the spread of quantum information during evolution by bounding the commutator of a time
evolved local operator A, with another operator B a distance r away. The spread of the operator A can be apportioned into the spread due
to interactions of range shorter than R′ (left column) and long-range hops due to interactions of range larger than R′ (center column). The
long-range hops connect the short-range time evolved operator A with strength at most f (R′) but they can originate from any location that
A has spread to, so the total contribution of these long-range hops is weighted by the integral I[λ] (see Lemma 1). At the first iterative
step, which yields λ1, the short-range interactions can always be characterized by an exponentially decaying bound with a sharp light cone
with slope (vR′)−1, Eq. (21). This corresponds exactly to the short-range contribution to λ1 (a). The long-range contribution arises from the
long-range hops that connect the inside of the light cone to the support of B (b). By choosing the cutoff R′ as a function of the operator
distance, R′ = rσ1 , the resulting bound becomes the sum of exponential and power-law decaying terms, Eq. (28), the latter of which dominate
the long-distance decay of the bound (c). This choice of R′ leads to the light-cone slope of (vrσ1 )−1 of panel (a). At the nth iteration step,
which yields λn, we choose a new cutoff R̃′. As before, we obtain a short-range contribution that yields a linear light cone with slope (vR̃′)−1

(d). More importantly, the long-range hops will now be weighted by the power-law decay of the previous bound λn−1, illustrated by the dark
shading (e). It is the combination of these two power-law decays that enables our iterative procedure to improve the asymptotic decay of the
bound λn after specifying the cutoff as R̃′ = rσn (f) (see Sec. III B). This choice of R̃′ leads to the light-cone slope of (vrσn )−1 of panel (d).

� λ(R′ )(d (X,Y ))‖A‖‖B‖ + 2t‖A‖‖B‖
∑
z∈�

∑
Z�z:R′<diam(Z )�R

λ(R′ )(d (X, z))‖HZ‖

� λ(R′ )(d (X,Y ))‖A‖‖B‖ + 2t‖A‖‖B‖ f (R′)
∑
z∈�

λ(R′ )(d (X, z))

� ‖A‖‖B‖λ(R′ )(d (X,Y )) + 2‖A‖‖B‖t f (R′)|X | sup
x∈X

∑
z∈�

λ(R′ )(d (x, z))

� ‖A‖‖B‖λ(R′ )(d (X,Y )) + 2‖A‖‖B‖t f (R′)|X |I[λ(R′ )]. (17)

In going from the second to the third inequality, it is helpful
to recall that λ(R′ )(d (X,Y )) is independent of s (but dependent
on t). In going from the fourth to the fifth inequality, we used∑

z∈�

∑
Z�z,R′<diam(Z )�R

λ(R′ )(d (X, z))‖HZ‖ (18)

=
∑
z∈�

λ(R′ )(d (X, z))
∑

Z�z,R′<diam(Z )�R

‖HZ‖ (19)

� f (R′)
∑
z∈�

λ(R′ )(d (X, z)). (20)

To obtain the final result, we have used Lemma 2 in
Appendix A to replace the sum by an integral in the last
inequality of Eq. (17).

Finally, let us emphasize that the simplest bound for
λ(R′ )(d (X,Y )) corresponds to the short-range Lieb-Robinson
bound where the interactions have at most range R′ and, thus,
can always be used as the first term of Eq. (13). �

We now iteratively apply Lemma 1. Equation (15) says that
a Lieb-Robinson bound λ(R) for an interaction with maximum
range R can be rewritten as the sum of two contributions:
a Lieb-Robinson bound λ(R′ ) for an interaction of maximum
range R′, which can be interpreted as the short-range part of
the evolution; and an additional contribution due to long-range
hops, which have range between R′ and R and maximum
strength f (R′). However, these “long-range hops” need not
originate in the support of the original A itself but, rather, in
the support of the time-evolved A under the short-range part
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of the interaction. This additional effect, depicted in Fig. 1, is
captured by the I[λ(R′ )] term.

At each iteration we replace the short-range contribution
by the short-range Lieb-Robinson bound. We make use of
the bound proven in Theorem A.1 of Ref. [24] which states
that, for observables A and B supported on sets X and Y ,
respectively,∥∥[τH�R′

t (A), B
]∥∥ � 2|X | exp[vt − d (X,Y )/R′]‖A‖‖B‖.

(21)

Finally, we are free to choose R′ in Eq. (15). In particular,
we choose it to be a function of r; specifically, at the nth
iteration we take R′ = rσn , with d/α < σn < 1. The resulting
bound no longer depends on any cutoff R′ and, when used
again in Eq. (15), leads to a faster decaying I[λ] and an
improved bound.

Therefore, at the nth iteration we obtain the bound∥∥[τH�R

s (A), B
]∥∥ � λ(R)

n (d (X,Y ))‖A‖‖B‖, (22)

where the iteration equation is

λ(R)
n (r) = 
r

{
2|X | exp[vt − r1−σn ]

+ C�(R − rσn )|X |t f (rσn )I
[
λ

(rσn )
n−1

]}
, (23)

where


r(u) =
{

2 r < 1 or u > 2

u otherwise
. (24)

This choice of 
r ensures that we always use the trivial bound
on the commutator when r = 0 or when it is the most stringent
bound. Now, it only remains to carry out the iteration.

2. Analyzing the iteration

To begin the iterative process we can invoke the generic
Lieb-Robinson bound for finite-range Hamiltonians, as de-
scribed in Eq. (21). Taking into account the trivial case,∥∥[τH�R

t (A), B
]∥∥ � 2‖A‖‖B‖, (25)

we begin the iteration with the initial bound:

λ
(R)
0 (r) = 
r (2|X |evt−r/R). (26)

We then find (calculation in Appendix B1)

I
[
λ

(R′ )
0

]
� C|X |[1 + (vtR′)d ]. (27)

Taking Eq. (23) and setting R′ = rσ1 , we have

λ
(R)
1 (r) � 
r{2|X |evt−r1−σ1 + C�(R − rσ1 )

× |X |2Jtr−σ1α[1 + rσ1d (vt )d ]}, (28)

which recovers the results in Ref. [24] with an appropriate
choice of σ1. From this point, we proceed by induction.
Indeed, suppose at the nth iteration we have

λ(R)
n (r)�
r

[
2|X |evt−r1−σn + C�(R − rσn )

2∑
i=1

F
(n)
i (vt ) rμ

(n)
i

]
.

(29)

Note that, according to Eq. (28), this is satisfied for n = 1 if
we take

μ
(1)
1 = σ1(−α + d ), (30)

μ
(1)
2 = −σ1α, (31)

F
(1)
1 (τ ) = Cτ d+1|X |2, (32)

F
(1)
2 (τ ) = Cτ |X |2. (33)

(Here we used the fact that J/v � C given the definitions of
these quantities.) Then, so long as μ

(n)
1 + d > 0 and μ

(n)
2 +

d < 0 we have (computed in Appendix B 2)

I
[
λ(R′ )

n

]
� C

{|X |[1 + (vt )d/(1−σn )]+F
(n)
2 (vt ) (vt )(d+μ

(n)
2 )/(1−σn )

+ F
(n)
1 (vt ) (R′)(μ(n)

1 +d )/σn
}
, (34)

and therefore, using Eq. (23) and setting R′ = rσn+1 ,

λ
(R)
n+1(r) � 
r

(
2|X |evt−r1−σn+1

+ C�(R − rσn+1 )|X |Jtr−σn+1

(
α− μ

(n)
1 +d

σn

)
F

(n)
1 (vt )

+ C�(R − rσn+1 )|X |Jtr−σn+1α

× {|X |[1 + (vt )d/(1−σn )]

+ F
(n)
2 (vt ) (vt )(d+μ

(n)
2 )/(1−σn )

})
. (35)

By choosing σn+1 � σn we ensure that the spatial decay of the
exponential term does not increase in performing the iterative
procedure.

So at the next iteration we have

μ
(n+1)
1 = σn+1

[−α + (μ(n)
1 + d

)
/σn
]
, (36)

μ
(n+1)
2 = −σn+1α, (37)

F
(n+1)
1 (τ ) = Cτ |X |F(n)

1 (τ ), (38)

F
(n+1)
2 (τ ) = Cτ |X |{|X |[1 + τ d/(1−σn )]

+ F
(n)
2 (τ ) τ (d+μ

(n)
2 )/(1−σn )}. (39)

Iteratively applying Eq. (36) to the initial condition of
Eq. (30) yields

μ
(n)
1 =

(
1 + 1

σ1
+ 1

σ2
+ . . .

1

σn−1

)
σnd − nσnα. (40)

At each iteration, μ
(n)
1 is made smaller (i.e., more negative)

at the cost of increasing the leading power of τ in F
(n)
1 (τ ),

so long as μ
(n)
1 > −d . By choosing appropriate σ j , we even-

tually reach an iteration step n = n∗ such that μ
(n∗ )
1 + d < 0

and Eq. (34) no longer holds [and neither will the iteration
equations Eqs. (36)–(39)]. For n > n∗, I[λR′

n ] becomes inde-
pendent of R′:

I
[
λR′

n�n∗
]
� C

{|X |[1 + (vt )d/(1−σn )]

+ F
(n)
1 (vt ) (vt )(d+μ

(n)
1 )/(1−σn )

+ F
(n)
2 (vt ) (vt )(d+μ

(n)
2 )/(1−σn )

}
, (41)
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which leads to new iterative steps where the spatial decays of
both polynomial terms are the same:

μ
(n+1)
1 = μ

(n+1)
2 = −σn+1α, (42)

F
(n+1)
1 (τ ) = τ 1+(d+μ

(n)
1 )/(1−σn )|X |F(n)

1 (τ ), (43)

F
(n+1)
2 (τ ) = τ |X |{|X |[1 + τ d/(1−σn )]

+ F
(n)
2 (τ )τ (d+μ

(n)
2 )/(1−σn )

}
. (44)

At this point in the iterative procedure, further iterations
do not improve on the power-law decay of the Lieb-Robinson
bound since they are set by −σnα.

With regards to the time dependence of the bound, at
each iteration step n, one can choose σn > (1 + d )/(1 + α),
reducing the time dependence of F(n)

i (vt ) in Eqs. (39), (43),
and (44). For such choices of σn and enough iteration steps,
the leading temporal dependence arises from the τ 1+d/(1−σn )

term introduced in each iteration step in Eq. (44). As a result,
there is some iteration number m > n∗ above which the most
meaningful terms of the bound do not change. At this point,
the bound λ(R)

m (r) is given by

λ(R)
m � 
r

[
2|X |evt−r1−σm + C�(R − rσm )

× r−σmα{|X |2(vt )1+d/(1−σm ) + . . .}], (45)

where the ellipses denote terms with lower power in vt , but
higher power in |X |.

We can make the previous considerations more concrete
by analyzing the case where σ j are all made equal, σ j = σ >

(d + 1)/(α + 1). This inequality ensures the reduction of the
time dependence of F(n)

i (vt ).
For this choice of σ j , Eq. (40) simplifies to

μ
(n)
1 = (n − 1 + σ )d − nσα, (46)

further leading to n∗ = σd/(σα − d )�.
For n > n∗, the time dependence is encoded in

F
(n)
1 (τ ) ∼ τ 1+d/(1−σ )[τ [1+d−σ (1+α)]/[1−σ ]]n−1 + . . . , (47)

F
(n)
2 (τ ) ∼ τ 1+d/(1−σ ) + . . . (48)

where ellipses correspond to lower power of τ . Then, F2(τ )
becomes the dominant term immediately for iteration step
n∗ + 1 as the term [ · ]n−1 reduces the leading term of F(n)

1 (τ )
to be smaller than F

(n)
2 (τ ). Because different terms have

different dependences on |X |, to ensure all constants are
independent of |X |, we include the largest power of |X | emerg-
ing from our construction in front of the time dependence.
Finally, taking R → ∞ yields the final result as expressed in
Theorem 1.

II. POWER-LAW LIGHT CONES

In short-range interacting systems, the length scale associ-
ated with the exponential decay of the Lieb-Robinson bound,
Eq. (21), provides a natural definition for a light cone. In
contrast, Lieb-Robinson bounds in long-range interacting sys-
tems are characterized by power-law spatial decays that lack
a natural length scale [47]. As a result, the precise notion of a
light cone will depend on which properties we wish to capture.

One way to define a light cone is in terms of the “spread of
information”: that is, suppose we consider the time evolution
of two states |ψ〉 and O|ψ〉, where O is a local operator. The
light cone is the region of radius RLC1(t ) around the support
of O, outside which both time-evolved states yield nearly
identical local observables. It is a direct measure of the spread
of the influence of the perturbation O across the system as a
function of time t . We refer to this light cone as LC1.

A different way to define a light cone is in terms of the
region of the system that can affect the evolution of local
observables appreciably. More specifically, consider the time
evolution of an operator O under two different Hamiltonians,
H and H + 
H . Intuitively, if 
H only acts very far away
from O, it will not have a significant impact on the evolution
of O at short times. One can make this intuition precise and
guarantee that the evolution of O does not change appreciably,
until time t , if 
H only acts a distance RLC2(t ) away from
O. RLC2(t ) then characterizes the “zone of influence” of the
evolution of operator O. We refer to this light cone as LC2.
Strictly speaking, LC2 is not a light cone. However, this zone
of influence is intimately connected with a modified notion of
the past light cone. Our usual understanding of such a past
light cone consists of all events (points in space-time) where
acting with a local operator can influence the current event.
The modified past light cone that is naturally associated with
LC2 corresponds to all events where a change in the Hamil-
tonian can influence the current event. In long-range systems,
these two light cones need not be equal, as even a local change
to the Hamiltonian can affect the system nonlocally.

In general, in power-law interacting systems, LC2 will
be greater than LC1. Intuitively, as the operator O expands
outwards, the number of terms of 
H it can interact with
increases dramatically. As a result, it is not only necessary
that the operator is mostly localized to a particular region, but
also that the spatial profile of the operator spread decays fast
enough to counteract the increasing number of terms that can
modify its dynamics.

We now make these definitions more precise. In order
to simplify the notation in this section, we write the Lieb-
Robinson bound between two operators A and B, such that
d (A, B) = r, and with at least one of |A| or |B| bounded by a
constant C, as ∥∥[τH

t (A), B
]∥∥

‖A‖‖B‖ � C(r, t ). (49)

This allows us to formally define LC1 as the light cone used
in previous literature.

Definition 1. Let LC1 be defined as a relation r = f (t )
such that

lim
t→∞ C( f (t ), t ) = 0. (50)

The meaning of LC1 is that the propagation of an operator
outside the light cone is small and gets smaller as t → ∞
[48]. Because we are interested in the asymptotic behavior, we
focus on power-law light cones, f (t ) = tγ , which characterize
the Lieb-Robinson bounds considered here. The smallest light
cone is characterized by the exponent βLC1, the infimum of the
γ which satisfy Eq. (50).

In contrast we wish to define LC2 as the region out-
side which changing the Hamiltonian of the system has no
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significant impact on the evolution of the operator. To obtain
a precise condition for LC2, we consider how changing the
Hamiltonian H to H + 
H impacts the evolution of an opera-
tor. More specifically, we consider modifying the Hamiltonian
only a distance rmin away from the operator of interest O. In
Appendix C, we show that the difference in the time evolved
operators is bounded by

‖eiHt Oe−iHt − ei(H+
H )t Oe−i(H+
H )t‖

� C
J‖O‖t
∫ ∞

rmin

dr rd−1C(r, t ) (51)

where 
J quantifies the local norm of 
H .
LC2 is then given by the relationship between rmin and

t that ensures that operator difference, bound in Eq. (51),
remains small and goes to zero in the long-time limit. This
immediately motivates the definition of LC2 as follows.

Definition 2. Let LC2 be defined as a relation r = f (t ) such
that

lim
t→∞ t

∫ ∞

f (t )
dr rd−1C(r, t ) = 0, (52)

where d is the dimensionality of the system.
Again, we will focus on polynomial light cones, f (t ) = tγ ,

and define βLC2 as the infimum of the γ which satisfy Eq. (52).
In short-ranged interacting systems, where C(r, t ) ∝

evt−r/R, the exponential suppression of C(r, t ) at large r is
insensitive to the extra volume term in the definition of LC2,
Eq. (52), leading to the same linear light cone for both LC1
and LC2. This result is an immediate consequence of the
natural length scale in C(r, t ).

However, in long-range interacting systems, C(r, t ) has
a power-law decay in space which is sensitive to the extra
volume term in LC2. For example, for Eq. (52) to converge
and ensure a power-law LC2, the Lieb-Robinson bound must
decay faster than r−d ; for LC1 there is no such requirement.
As a result, for slowly decaying Lieb-Robinson bounds one
may have a power-law LC1 but no LC2, i.e., there is no power-
law f (t ) that satisfies Eq. (52). This is the case for the bound in
Matsuta et al. [24], where LC2 does not exist for d < α < 2d ,
yet LC1 matches that of Foss-Feig et al. [21]. LC2 is able to
capture the difference between these two results.

By comparison, our result supports both an LC1 and LC2
for α > d , extending the existence of an LC2 in long-range
multibody Hamiltonians to d < α < 2d . In this regime both
our Lieb-Robinson bound and that of Ref. [21] lead to a finite

1 2 3 4

Linear Light Cone

Ref. [21]
Ref. [24]
Our Paper

FIG. 2. Power-law LC2 exponent for the present paper and
Refs. [21,24] for d = 1 as a function of α. While Ref. [24] has a
finite power-law LC2 for α > 2d , Ref. [21] and our paper have a
power-law LC2 for all α > d . For α < αM our paper leads to a better
LC2 than Ref. [24], while matching it for α � αM . The horizontal
dashed line corresponds to a linear light cone. More details about the
calculation can be found in Appendix D.

LC2, albeit our bound exhibits a larger light-cone exponent.
Much like the difference in decay profile, this might be
inherent to our treatment of the more general case of arbitrary
multibody interactions.

In Table II and Fig. 2, we compare the different light-
cone exponents obtained from both our paper and previous
literature for different values of α. In Fig. 2, we plot the
exponent of LC2 of the different works as a function of
α for dimension d = 1. The general formulas for all space
dimensions d are summarized in Table II and the details of the
calculation can be found in Appendix D.

III. DISCUSSION

In this paper, we have proven an improved Lieb-Robinson
bound for generic multibody long-range interactions, charac-
terized by a faster asymptotic spatial decay. The importance
of this improvement is captured by the notion of LC2, a
definition of light cone that provides a stricter definition of
locality for the growth of operators, in particular, that their

TABLE II. Summary of the power-law light-cone exponents of LC1 and LC2 for both previous literature and our paper. We use
the subscripts FF and M to refer to the light-cone exponents from the bounds of Refs. [21] and [24], respectively. Here β̃ = 2

(α−d )2 ×
[α − d + αd (1 + √

1 + 2/d − 2/α)] and αM = 3d
2 [1 +

√
1 + 8

9d ]. For a detailed calculation see Appendix D.

Reference LC1 (d < α) LC2 (d < α � 2d ) LC2 (2d < α < αM ) LC2 (αM � α)

Ref. [21] βLC1
FF = α + 1

α − d
βLC2

FF = α + d

α

α + 1

α − d
+ 1

α
βLC2

FF = α + d

α

α + 1

α − d
+ 1

α
βLC2

FF = α + d

α

α + 1

α − d
+ 1

α

Ref. [24] βLC1
M = α + 1

α − d
✗ βLC2

M = α + 2

α − 2d
βLC2

M = α + 2

α − 2d

Our paper βLC1 = α + 1

α − d
βLC2

FF < βLC2 = β̃ βLC2
FF < βLC2 = β̃ < βLC2

M βLC2 = α + 2

α − 2d
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evolution is not affected by the outside region for large t . Our
paper extends the existence of an LC2 light cone for generic
multibody interacting systems for d < α < 2d .

This improvement has important implications for under-
standing prethermalization and Floquet phases of matter in
periodically driven systems. In such systems (especially in the
high-frequency regime), one can capture the evolution under
a time-dependent Hamiltonian H (t ) using a time-independent
approximation. Even when the original H (t ) has strictly two-
body terms, the time-independent approximation will natu-
rally exhibit multibody terms. The results which establish
the accuracy and limitations of such approximations require
Lieb-Robinson bounds for multibody power-law interactions
with a rapid decay outside the light cone [45].

Note added. Recently, the authors became aware of a new
Lieb-Robinson bound [49] that improves upon Ref. [21].
The bound in Ref. [49] has an LC1 exponent of α/(α − d )
under similar assumptions as Ref. [21], namely, two-body
interactions. However, the authors’ result (phrased in terms
of commutators) does not yield a finite LC2 for d < α < 2d .
Nevertheless, the structure of their arguments is intriguing,
and understanding how to generalize their results to multibody
interactions is a promising direction for future study.
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APPENDIX A: TECHNICAL RESULTS

Lemma 2. Let f (r) be a monotonically decreasing function
of r, and fix an x ∈ �. Then∑

z ∈ � :
a � d (z, x) � R

f (d (z, x)) � C

ad

∫ R

a/2
f (r)rd−1 dr, (A1)

where a is the minimum separation between sites.
Proof. Around each site z, consider a ball Bz of radius

a/2. Given our assumption that a is the smallest separation
between sites, these balls are pairwise disjoint (up to sets of
measure zero). Now, for any r in Bz, we have that f (|r − rx| −
a/2) � f (d (z, x)). Therefore,

V f (d (z, x)) �
∫

Bz

f (|r − rx| − a/2) dd r, (A2)

where V is the volume of the ball Bz. In the case that d (x, z) <

3a/2, we will use the tighter bound:

V f (d (z, x)) �
∫

Bz :|r−rx |<a
f (|r − rx|) dd r

+
∫

Bz :|r−rx |>a
f (|r − rx| − a/2) dd r. (A3)

Now using the fact that ∪Bz ⊆ Rd , we find that∑
z ∈ � :

a � d (z, x) � R

f (d (z, x))

� C

ad

[∫ a

a/2
rd−1 f (r) dr +

∫ R+a/2

a
rd−1 f (r − a/2) dr

]
.

(A4)

We can bound the second integral by∫ R+a/2

a
rd−1 f (r − a/2) dr (A5)

=
∫ R

a/2
(u + a/2)d−1 f (u) du (A6)

� C′
∫ R

a/2
ud−1 f (u) du. (A7)

This immediately proves the lemma. �
Lemma 3. For any μ and ν and positive ρ then the following

inequality holds for a constant C independent of ρ:∫ ∞

ρ

e−xν

xμ dx � Ce−ρν

(1 + ρμ−ν+1). (A8)

Proof. It is sufficient to consider the case of ν = 1, since
we can reduce to this case by a change of variables. Let us first
consider μ < 0; then∫ ∞

ρ

e−xxμ dx � ρμ

∫ ∞

ρ

e−x dx = ρμe−ρ. (A9)

We are now left with the case μ > 0. In that case, if ρ � 1
then we can certainly bound the left-hand side of Eq. (A8) by∫ ∞

ρ

e−xxμ dx � e1−ρ

[∫ ∞

0
e−xxμ

]
= C1e−ρ. (A10)

On the other hand, for ρ � 1, we have∫ ∞

ρ

e−xxμ dx (A11)

= e−ρρμ

∫ ∞

ρ

e−(x−ρ)(x/ρ)μ dx (A12)

= e−ρρμ

∫ ∞

0
e−u(u/ρ + 1)μ du (A13)

� e−ρρμ

∫ ∞

0
(u + 1)μe−u du (A14)

= C2e−ρρμ � C2e−ρρμ+ε (A15)

for any ε > 0. Adding both bounds with C = max(C1,C2)
ensures it holds for all values of ρ. �

APPENDIX B: CALCULATION OF I[λ]

In this section we perform the calculation of I[λ(R′ )
n ],

defined in Eq. (16) of the main text. We divide this calculation
into two cases, n = 0 and n > 0, where λ(R′ )

n takes different
functional forms.
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1. n = 0 case

In the initial bound, given in Eq. (26) of the main text, one
can define a light cone inside which the trivial bound is best,
described by

|X |evt−r/R′ = 1 ⇒ r = R′(ln |X | + vt ). (B1)

As a result, one can bound I[λ(R′ )
0 ] by the less stringent

light cone r = R′vt as follows:

I
[
λ

(R′ )
0

] = λ
(R′ )
0 (0) +

∫ ∞

1/2
ρd−1λ

(R′ )
0 (ρ) dρ (B2)

� 2 + 2
∫ R′vt

1/2
ρd−1 dρ + 2|X |

∫ ∞

R′vt
ρd−1evt−ρ/R′

dρ (B3)

� 2

{
1 + 1

d
(R′vt )d + |X |evt e−vtC[1 + (R′vt )d−1]

}
(B4)

� C[|X | + |X |(R′vt )d−1 + (R′vt )d ] (B5)

where we made use of Lemma 3 to bound the second integral.

This bound can be made less stringent as follows:

I
[
λ

(R′ )
0

]
� C|X |[1 + (R′vt )d ]. (B6)

This simplification leads to one less polynomial term in our
iterative analysis but does not affect the spatial or temporal
asymptotic behavior of the bound. In contrast, it increases F1

by a factor of |X | in our construction.

2. n � 1 case

For n � 1, the bound λ(R′ )
n (r) is composed of an exponen-

tial term and two polynomial terms, as described in Eq. (29)
of the main text.

Similar to the calculation for n = 0, there exists a light
cone inside of which the trivial bound is best. Such a light
cone, in principle, will depend on the polynomial terms of the
bound; however, it must be at least as big as the length scale
of the exponential term of the bound given by

vt − r1−σn = 0 ⇒ r = (vt )1/(1−σn ). (B7)

One can then bound I[λ(R′ )
n ] as

I
[
λ(R′ )

n

] = λ(R′ )
n (0) +

∫ ∞

1/2
ρd−1λ(R′ )

n (ρ) dρ (B8)

� 2 + 2
∫ (vt )1/(1−σn )

1/2
ρd−1 dρ +

∫ ∞

(vt )1/(1−σn )
ρd−1

[
2|X |evt−ρ1−σn + C�(R′ − ρσn )

2∑
i=1

F
(n)
i (vt )ρμ

(n)
i

]
dρ (B9)

� 2 + 2
∫ (vt )1/(1−σn )

1/2
ρd−1 dρ + 2|X |

∫ ∞

(vt )1/(1−σn )
ρd−1evt−ρ1−σn

dρ +
2∑

i=1

C
∫ R′1/σn

(vt )1/(1−σn )
ρd−1F

(n)
i (vt )ρμ

(n)
i dρ (B10)

� 2 + 2

d
(vt )d/(1−σn ) + 2|X |C[1 + (vt )(d )/(1−σn )−1] + C

2∑
i=1

F
(n)
i (vt )

ρd+μ
(n)
i

d + μ
(n)
i

∣∣∣∣∣
(R′ )1/σn

(vt )1/(1−σn )

. (B11)

The sign of d + μ
(n)
i becomes important in bounding the polynomial terms [50]: if d + μ

(n)
i > 0, we can bound the term solely

by the upper limit of integration; if d + μ
(n)
i < 0, then we can bound using the lower limit. The final bound on I[λ(R′ )

n ] then
becomes

I
[
λ(R′ )

n

]
� C[|X | + |X |(vt )d/(1−σn )−1 + (vt )d/(1−σn )] + C

2∑
i=1

F
(n)
i (vt ) ×

{
(R′)(d+μ

(n)
i )/σn d + μ

(n)
i > 0

(vt )(d+μ
(n)
i )/(1−σn ) d + μ

(n)
i < 0

. (B12)

This bound can be slightly simplified at the expense of a higher dependence of the (vt )d/(1−σn ) term on |X |. Nevertheless, this
simplification does not change the asymptotic spatial or temporal decay of our results:

I
[
λ(R′ )

n

]
� C|X |[1 + (vt )d/(1−σn )] + C

2∑
i=1

F
(n)
i (vt ) ×

{
(R′)(d+μ

(n)
i )/σn d + μ

(n)
i > 0

(vt )(d+μ
(n)
i )/(1−σn ) d + μ

(n)
i < 0

. (B13)

APPENDIX C: BOUNDING THE OPERATOR DIFFERENCE
UNDER TWO DIFFERENT HAMILTONIANS

Consider a local operator O, which is time evolved under
two different Hamiltonians H1 and H2. Let us consider 
H =
H1 − H2 such that it is only nonzero at sites outside some
radius rmin around O and quantify its difference in terms of
the largest local difference:

sup
x∈�

∑
Z:x∈Z

‖(H1)Z − (H2)Z‖ (C1)

= sup
x∈�

∑
Z:x∈Z

‖
HZ‖ < 
J, (C2)

where � is the set of sites of the system and ‖ · ‖ corresponds
to the norm of the HZ term.

The goal of this section is to bound how much O will
differ when evolved under the two different Hamiltonians. In
particular, we consider the following norm:∥∥U †

1 OU1 − U †
2 OU2

∥∥ = ∥∥O − U1U
†
2 OU2U

†
1

∥∥ (C3)

where Un = e−iHnt

where the time dependence of Un is implicit to simplify
the notation. Let us also note the similarities to results in
Loschmidt echoes, where one evolves the system forwards
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with one Hamiltonian H1 and then backwards with a slightly
different Hamiltonian H2 [51,52].

We begin by noting the following property:

f (t ) = O − U1(t )U †
2 (t )OU2(t )U †

1 (t ), (C4)

d

dt
f (t ) = −iU1(t )[U2(t )OU †

2 (t ),
H]U †
1 (t ) (C5)

where we used the fact that [Un, Hn] = 0. One can now bound
the difference as

‖ f (t )‖ =
∥∥∥∥∫ t

0
ds iU1(s)[U2(s)OU †

2 (s),
H]U †
1 (s)

∥∥∥∥
�
∫ t

0
ds ‖[U2(s)OU †

2 (s),
H]‖

�
∫ t

0
ds
∑

Z

‖[U2(s)OU †
2 (s),
HZ ]‖. (C6)

We now focus our attention to the inner sum. Because 
H
is only nonzero on sites at rmin away from the operator O we
can bound ∑

Z

‖[U2(s)OU †
2 (s),
HZ ]‖ (C7)

�
∑

z:d (z,O)�rmin

∑
Z : z ∈ Z,

d (Z, O) = d (z, O)

‖[U2(s)OU †
2 (s),
HZ ]‖ (C8)

�
∑

z:d (z,O)�rmin

‖O‖
∑

Z : z ∈ Z
d (Z, O) = d (z, O)

‖
HZ‖ C(d (O, z), s) (C9)

= ‖O‖
∑

z:d (z,O)�rmin

C(d (O, z), s)
∑

Z : z ∈ Z
d (Z, O) = d (z, O)

‖
HZ‖

(C10)

� ‖O‖
∑

z:d (z,O)�rmin

C(d (O, z), s)
J (C11)

� C‖O‖
J
∫ ∞

rmin

dr rd−1C(r, s), (C12)

where we used Lemma 3 to turn the sum into an integral.
Using the fact that C(r, s) is an increasing function in s we

can obtain the final bound:

‖U †
1 OU1 − U †

2 OU2‖ � C‖O‖
Jt
∫ ∞

rmin

dr rd−1C(r, t ).

(C13)

APPENDIX D: CALCULATION
OF LIGHT CONES

Our task in this section is to determine the LC1 and
LC2 light cones for Refs. [21,24] and our paper. In order to
simplify the notation, let us write the Lieb-Robinson bounds
in terms of C(r, t ) as defined in Eq. (49) of the main text.
For the different results, C(r, t ) contains a combination of
exponential and power-law terms which need to be considered
in determining LC1 and LC2.

Let us note that the iterative construction that leads to
the bound in Theorem 1 of the main text depends on two
parameters: σ , the scaling of the inner cutoff in the iterative

procedure, and n, the number of iterations performed. While
the fastest spatial decay occurs for σ → 1, this does not
necessarily lead to the smallest light cone, as the spatial
decrease occurs at the expense of an increased growth in the
temporal dependency. The same is true for the number of
iterations n. As a result, one has to optimize both σ and n
to find the smallest light cone.

1. LC1 for power-law interactions

a. Foss-Feig et al. [21] and Matsuta et al. [24]

The computation of LC1 for Refs. [21,24] is performed in
those works, leading to a matching light-cone power law:

βLC1
FF = βLC1

M = α + 1

α − d
, (D1)

where the subscripts FF and M refer to Refs. [21] and [24],
respectively.

b. Our paper

As described in the main text, our proposed iterative con-
struction matches the result of Ref. [24] for n = 1. As a result,
for n = 1 we have βLC1 = βLC1

M .
We now can show that performing further iterative steps

does not change the value of the LC1 exponent. In the iterative
construction of our Lieb-Robinson bound, for n > 1 and σ j =
σ for all j, we have

C(r, t ) � C
{
evt−r1−σ +F

(n)
1 (vt )rμ

(n)
1 + F

(n)
2 (vt )rμ

(n)
2
}
, (D2)

where we have absorbed any |X | dependence into the constant
C as it does not affect the light cone calculation, and

F
(n)
i (τ ) = τ γ

(n)
i + . . . , (D3)

where ellipses refer to lower power of τ . Because we are
interested in the late time asymptotic form of the light cone
we only need to focus on the largest power of τ . This exponent
γ

(n)
i is given by

γ
(n)

1 =
⎧⎨⎩

d + n n � n∗

σα + n[1 + d − σ (1 + α)]

1 − σ
n > n∗ , (D4)

γ
(n)

2 = 1 + d

1 − σ
+ max

[
0,

n − 2

1 − σ
{1 + d − σ (1 + α)}

]
.

(D5)

An important remark is that if σ > (d + 1)/(α + 1) then 1 +
d − σ (1 + α) < 0. In this regime, increasing n reduces γ

(n)
1

for n > n∗ and does not change γ2.
The spatial decay is then given by

μ
(n)
1 =

{−nσα + d (σ + n − 1) n � n∗

−σα n > n∗ , (D6)

μ
(n)
2 = −σα. (D7)

Each of the three terms (the exponential and the two
polynomials) will lead to a LC1 exponent. The final exponent
is the largest of the three for some n and σ . Optimizing over
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these two parameters yields the best βLC1:

βLC1
n;exp = 1

1 − σ
, (D8)

βLC1
n;poly1 = γ

(n)
1

−μ
(n)
1

, (D9)

βLC1
n;poly2 = γ

(n)
2

−μ
(n)
2

. (D10)

Immediately, one can see that βLC1
n;exp is an increasing func-

tion of σ . At the same time βLC1
n;poly1 is a decreasing function of

σ for any fixed n, as shown below. The intersection of the two
curves provides the best LC1 exponent from the exponential
and first polynomial term alone. This intersection occurs at
σ = σ1;exp. If βLC1

n;poly2(σ1;exp) is less than or equal to the other
two curves at this point, it corresponds to the correct LC1
exponent.

We begin by showing that βLC1
n;poly1 is a decreasing function.

If n � n∗,

βLC1
n;poly1 = d + n

σ (nα − d ) − (n − 1)d
, (D11)

which is a decreasing function of σ .
We now focus on the case n > n∗:

βLC1
n;poly1 = σα + n[1 + d − σ (1 + α)]

(1 − σ )σα
. (D12)

First, let us note that n∗ is a decreasing function of σ .
Moreover, for this calculation to be meaningful we need

n > n∗(σ = 1) ⇒ n � n∗(σ = 1) + 1 (D13)

=
⌈

d

α − d

⌉
+ 1 =

⌈
α

α − d

⌉
� α

α − d
. (D14)

We can now compute the derivative of βLC1
n;poly1 with respect

to σ :

d

dσ
βLC1

n;poly1 = ασ 2 − n[(1 + d )(1 − 2σ ) + σ 2(1 + α)]

ασ 2(1 − σ )2
.

Parametrizing α = d + ε and n = α/(α − d ) + δ = (d +
ε)/ε + δ, with ε > 0 and δ � 0, we obtain

d

dσ
βLC1

n;poly1 = −1

ε

1 + d

σ 2
− δ

(1 + d )(1 − σ )2 + σ 2ε

(d + ε)σ 2(1 − σ )2
,

which is always negative. Since the function is continuous,
and in both cases it is decreasing, it is always decreasing.

The intersection of the two curves then occurs as follows.
(1) If n � n∗,

d + n

σ (nα − d ) − (n − 1)d
= 1

1 − σ

⇒ σ1;exp = d + 1

α + 1
. (D15)

(2) If n > n∗,

σα + n[1 + d − σ (1 + α)]

σα(1 − σ )
= 1

1 − σ

⇒ σ1;exp = d + 1

α + 1
, (D16)

which regardless of the regime occurs at the same value of σ ,
leading to

βLC1
exp;poly1 = α + 1

α − d
. (D17)

At the same time,

βLC1
n;poly2(σ = σ1;exp) = α + 1

α − d
= βLC1

exp;poly1 = βLC1, (D18)

which corresponds to the best LC1 light cone for this bound
(equal for any number of iterations), in agreement with the
previous works [21,24].

2. Light cone 2 for power-law interactions

a. Foss-Feig et al. [21]

We can summarize the bound obtained in Ref. [21] as [53]

CFF(r, t ) = exp

[
vt − r

tγ

]
+ t (α+d )(1+γ )

rα+d

where γ = 1 + d

α − d
. (D19)

One can immediately extract the light cone associated with
LC2 for the two terms:

βLC2
FF;exp = α + 1

α − d
, (D20)

βLC2
FF;poly = α + d

α

α + 1

α − d
+ 1

α
. (D21)

Since the latter is larger, it sets βLC2
FF , which is valid for α > d .

Let us note that because the Lieb-Robinson bound in
Ref. [21] holds only for two-body interactions the calculation
of LC2 also only holds for such Hamiltonians H1. Moreover,
because the bound is only valid for operators A and B which
lie at a single site, the derivation in Sec. III needs to consider
the size of each term Hz, leading to an overall extra factor of
2 (which can be absorbed into the constant C).

b. Matsuta et al. [24]

In analyzing Ref. [24], we can make use of the results
obtained in our iterative procedure after a single iteration.
Using Eq. (28) of the main text, we can immediately compute
the exponent of the LC2 power-law light cone arising from
each term of the bound:

βLC2
n=1;exp(σ ) = 1

1 − σ
, (D22)

βLC2
n=1;poly1(σ ) = d + 2

σ (α − d ) − d
, (D23)

βLC2
n=1;poly2(σ ) = 2

σα − d
(D24)

for d/(α − d ) < σ < 1. This condition immediately requires
α > 2d for there to exist a power-law LC2. Having the
exponents as a function of σ , βLC2

M is given by the optimized
exponent with respect to σ :

βLC2
M = inf

d/(α−d )<σ<1

[
max

(
βLC2

n=1;exp(σ ),

× βLC2
n=1;poly1(σ ), βLC2

n=1;poly2(σ )
)]

. (D25)
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For all σ , βLC2
n=1;poly1(σ ) > βLC2

n=1;poly2(σ ) and both are de-
creasing functions, while βLC2

exp is an increasing function. As
a result, the minimum occurs at the intersection between
βLC2

n=1;poly1 and βLC2
exp , which occurs at σ = (2d + 2)/(α + 2),

leading to the light cone exponent:

βLC2
n=1 = α + 2

α − 2d
= βLC2

M , (D26)

for α > 2d .

c. Our paper

Since we have considered the case of n = 1 in Appendix
D 2 b, we now restrict our attention to n > 1. We will begin
our calculation by focusing on the contribution from βLC2

n;exp

and βLC2
n;poly2 first and then confirming that the other polynomial

term will not change the obtained exponent.
Based on the exponential term and the polynomial expo-

nents in Eqs. (D5) and (D7) we obtain

βLC2
n;poly2 = 1 + γ

(n)
2

−μ
(n)
2 − d

(D27)

=
{−d+2σα+n[1+d−σ (1+α)]

(1−σ )(σα−d ) σ < d+1
α+1

2(1−σ )+d
(1−σ )(σα−d ) σ � d+1

α+1

, (D28)

βLC2
n;exp = 1

1 − σ
. (D29)

Because βLC2
n;poly2 is a convex function, the correct LC2 ex-

ponent βLC2 will occur in one of two regimes: at the minimum
of βLC2

n;poly2 or at the intersection of βLC2
n;poly2 and βLC2

n;exp (i.e., at the
first intersection of βLC2

n;poly2 and βLC2
n;exp; the second intersection

occurs as σ → 1, where both exponents become infinite).
The location of the minimum occurs at

σ2;min = 1 + d

2
− d

2

√
1 + 2

d
− 2

α
(D30)

⇒ βLC2
n;poly2(σ2;min)

= 2
α − d + dα[1 + √

1 + 2/d − 2/α]

(α − d )2
. (D31)

The intersection, on the other hand, occurs at

σ2;exp = 2d + 2

α + 2

⇒ βLC2
n;poly2(σ = σ2;exp) = α + 2

α − 2d
, (D32)

which requires, for consistency, α > 2d . This exponent
matches that of n = 1 and Ref. [24].

Because σ2;min, σ2;exp > (d + 1)/(α + 1), only the sec-
ond branch of Eq. (D28) is relevant for this minimization
procedure. This branch is independent of the number of
iterations performed; the above results are valid for all n > 1.

If we now consider βLC2
n;poly1 it can never improve on this

minimization; it only worsens it. Moreover, by choosing σ >

(d + 1)/(α + 1) and n � n∗ + 1 iterations, one ensures that
F

(n∗+1)
2 contains the dominant asymptotic time dependence of

the polynomial terms, ensuring that βLC2
n;poly2 � βLC2

n;poly1. As a
result, considering βLC2

n;poly1 does not change our analysis of the
LC2 exponent; it only imposes that n � n∗ + 1.

Then, by choosing n � n∗ + 1, we can immediately com-
pute the LC2 exponent βLC2 by just considering βLC2

n;poly2 and
βLC2

n;exp. In this regime, the exponents are independent of n, as
shown above. There are two regimes that can determine βLC2.

(1) βLC2 occurs at the intersection of the curves βLC2
n;poly2(σ )

and βLC2
n;exp, which occurs at σ = σ2;exp. This requires that

σ2;exp � σ2;min, which gives us a condition for α:

α � αM ≡ 3d

2

(
1 +

√
1 + 8

9d

)
, (D33)

which is consistent with the requirement 2d < αM for the
intersection solution to be meaningful.

(2) βLC2 occurs at the minimum of βLC2
n;poly2, which occurs

for α < αM .
Thus, we can summarize our result as follows.
(1) If d < α < αM ,

βLC2 = 2

(α − d )2
{α − d + dα[1 +

√
1 + 2/d − 2/α]}.

(D34)

(2) If αM < α,

βLC2 = α + 2

α − 2d
. (D35)

Then, for α > αM , our LC2 light cone matches that of
Matsuta et al. [24], while for α < αM our iterative procedure
ensures a better LC2 under similar assumptions. In fact, for
α < 2d , our LC2 is well defined while the LC2 of Matsuta
et al. [24] diverges. However, our LC2 is bigger than that of
a purely two-body power-law interacting system [21]. This
situation is summarized in Table II of the main text, and the
α dependencies of βLC2 are plotted for the Lieb-Robinson
bounds of the present paper and Refs. [21,24] for d = 1 in
Fig. 2 of the main text.
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